电机与控制应用 Electric Machines & Control Application

DOI:10.12177/emca.2024.090

文章编号:1673-6540(2024)09-0070-10 中图分类号:TM 352 文献标志码:A

低转矩脉动永磁辅助同步磁阻电机转子 结构优化设计

冯魏,郭凯凯*

(安徽理工大学 电气与信息工程学院,安徽 淮南 232001)

Optimized Rotor Design for Permanent Magnet Assisted Synchronous Reluctance Motor with Low Torque Ripple

FENG Wei, GUO Kaikai*

(School of Electrical and Information Engineering, Anhui University of Science and Technology,

Huainan 232001, China)

Abstract: To address the issue of high torque ripple in permanent magnet assisted synchronous reluctance motor (PMA-SynRM), a multi-objective optimization design method based on the non-dominated sorting genetic algorithm II (NSGA-II) was proposed. First, the basic structure and working principle of the PMA-SynRM were introduced. Next, the rotor structure of the PMA-SynRM was improved by constructing air barriers and designing asymmetric auxiliary slots. Then, sensitivity analysis was conducted to identify the parameters that had the most significant impact on the optimization objectives of the PMA-SynRM, and multiobjective optimization was performed using NSGA-II. The optimal topology was selected from the generated Pareto front. Finally, the torque performance of the optimized motor was compared with that of the initial motor using finite element analysis software. Simulation results showed that the performance of the PMA-SynRM optimized through NSGA-II was significantly improved.

Key words: permanent magnet assisted synchronous reluctance motor; multi-objective optimization; auxiliary slot; torque ripple; NSGA-II

摘 要:针对永磁辅助同步磁阻电机(PMA-SynRM)转矩脉动大的问题,提出了一种基于非支配排序遗传算法(NSGA-II)的 PMA-SynRM 多目标优化设计方法。首先,

基金项目:安徽省教育厅基金重大项目(2022AH040110); 国家自然科学基金青年科学基金(51905003)

Anhui Provincial Department of Education Fund Major Project (2022AH040110); Young Scientists Fund of the National Natural Science Foundation of China (51905003) 介绍了 PMA-SynRM 的基本结构与工作原理;其次,通过 构建空气磁障、设计不对称辅助槽对 PMA-SynRM 转子结 构进行改进;然后,通过灵敏度分析选出了对 PMA-SynRM 优化目标影响较大的参数,通过 NSGA-II 进行多目标寻 优,从生成的 Pareto 前沿中选择最优拓扑结构;最后,通过 有限元软件,对优化后电机与初始电机的转矩性能进行 分析。仿真结果表明,基于 NSGA-II 优化后的 PMA-SynRM 其性能得到了显著提高。

关键词:永磁辅助同步磁阻电机;多目标优化;辅助槽; 转矩脉动; NSGA-Ⅱ

0 引言

近年来,随着"碳中和、碳达峰"目标的提出, 研究碳减排、零碳排放以及负碳排放等关键技术 及其共性科学问题已成为热点^[1-2]。永磁电机大 多采用钕铁硼永磁体,但高性能稀土永磁材料价 格昂贵,导致永磁电机的成本越来越高。而永磁 辅助同步磁阻电机(Permanent Magnet Assisted Synchronous Reluctance Motor, PMA-SynRM)通过 在空气磁障中加入少量永磁体,有效降低了电机 成本和对稀土资源的依赖程度。同时 PMA-SynRM 还具有凸极比大、调速范围广、效率高和永磁体用 量少等优点,因此被广泛应用于电动汽车驱动电 机、空调压缩机、风机及家用电器等领域^[3-5]。

PMA-SynRM 的转子通常采用多层磁通屏障 来获得高凸极比,通过提高磁阻转矩的比例来提 高总输出转矩,但是转矩脉动较大一直是该类电 机的一个问题,严重影响了输出转矩的平稳

性[6-7]。目前,国内外很多学者通过改变电机的结 构来优化电机磁场分布。文献[8]设计了一种在 一个转子叠片中具有两种不同磁障张角的 "Machaon"型转子结构,该结构能实现在牺牲更 少的平均转矩的同时降低更多的转矩脉动。文献 [9]从不同永磁体放置形式结构入手,发现永磁 体平行于磁障放置的电机比永磁体垂直于磁障放 置的电机更容易实现较大的电感差,磁阻转矩输 出更高。为降低电机转矩脉动,文献[10]总结归 纳了斜槽法、分数槽法等对转矩脉动的影响,为转 矩脉动的抑制提供参考。文献[11]优化了电机 磁障结构,优化后的电机结构明显降低了齿槽转 矩,进而降低了转矩脉动。文献[12]对同步磁阻 电机中的非对称磁障进行了全面研究,通过优化 气隙磁动势波形从而实现了较低的转矩脉动。文 献[13]研究了永磁同步电机定转子辅助槽对转矩、 转矩脉动和齿槽转矩的影响,为了优化转矩性能, 设计了不均匀气隙转子结构。文献[14]建立了转 子表面辅助槽的齿槽转矩解析表达式,通过有限元 分析,发现合理的齿槽可以削弱齿槽转矩。文献 [15]对转子辅助槽的多个设计参数进行多目标优 化,获得了最佳设计参数,试验表明,优化后电机的 转矩性能得到明显改善。文献[16]提出了两种新 的转子辅助槽,与传统的对称辅助槽进行比较发现 内偏置槽和对称辅助槽可以更好地减小齿槽转矩。 文献[17]将空气磁障几何参数作为待优化变量, 采用拉丁超立方抽样进行多目标优化,优化后降 低了电机的齿槽转矩和转矩脉动,提升了平均转 矩。文献[18]通过对比不同辅助槽形状、数量和 位置对内置式永磁同步电机转矩性能的影响,得 到了转子表面辅助槽可以通过改变气隙来改善气 隙磁密正弦度,进而影响输出转矩平滑性的结论。 文献[19-20]将电机优化常用的差分进化算法、粒 子群算法、遗传算法及非支配排序遗传算法 Ⅱ (Nondominated Sorting Genetic Algorithm, NSGA-II)进行比较后,发现 NSGA-II 优化效果更好。

基于上述研究,本文从提高电机平均转矩、降低转矩脉动以及降低齿槽转矩的角度出发,提出了一种基于 NSGA-II 的 PMA-SynRM 多目标优化设计方法。首先,通过构建空气磁障、设计不对称辅助槽对 PMA-SynRM 转子结构进行改进;然后,通过灵敏度分析将电机本体参数与辅助槽参数分

为显著变量和不显著变量,采用 NSGA-II 算法进行多目标寻优,得到 Pareto 最优解,从转子结构的各个设计参数中选出电机最佳性能的结构参数;最后,通过有限元软件,对优化后电机与初始电机的转矩性能进行分析。结果表明,优化后 PMA-SynRM 的性能得到了显著提高,为 PMA-SynRM 的设计优化提供了一定的指导和参考意义。

1 PMA-SynRM 基本结构及工作原理

1.1 PMA-SynRM 基本结构

PMA-SynRM 为4极36槽结构,定子采用双 层短距绕组,转子采用四层磁障结构,永磁体嵌入 转子磁障中,所有插入到空气磁障中的永磁体都 是钕铁硼磁体。PMA-SynRM 模型横截面如图1 所示,PMA-SynRM 的基本参数如表1所示。

表 1 PMA-SynRM 基本	参数
------------------	----

l'ab. I	Basic	parameters	of	PMA-SynRM

参数名称	参数值
极数、槽数	4,36
电机功率/kW	0.6
额定转速/(r·min ⁻¹)	1 500
定子外径/mm	120
定子内径/mm	77
转子内径/mm	20
气隙长度/mm	0.35
轴向长度/mm	80
绕组匝数	43

Fig. 1 Cross-section diagram of PMA-SynRM

1.2 PMA-SynRM 工作原理

PMA-SynRM 是一种特殊类型的电机,其运行 原理融合了永磁同步电机和同步磁阻电机的特 性。PMA-SynRM 转子由磁性材料组成,没有任何 绕组,电机的磁阻特性使得在转子旋转时产生磁 阻变化,同时,永磁体产生一个稳定的磁场,这个 磁场与电机的定子线圈产生的磁场相互作用产生

力矩,从而驱动电机转动。永磁辅助同步磁阻电 机在 *d-q* 参考系中的空间矢量图如图 2 所示。

图 2 PMA-SynRM 空间矢量图 Fig. 2 Space vector diagram of PMA-SynRM

图 2 中: i_s 为定子电流空间矢量; i_a 、 i_q 分别为 i_s 的直、交轴分量; L_a 、 L_q 分别为直、交轴电感; ψ_{PM} 为永磁体产生的磁链空间矢量; ψ_0 为 i_s 产生的磁 链空间矢量; ψ_s 为 ψ_0 与 ψ_{PM} 的合成磁链空间矢 量; β 为 i_s 与 d 轴的夹角; γ 为 ψ_0 与 d 轴的夹角。

由图 2 中矢量关系可以看出,*d* 轴电流产生的 磁链对永磁磁链起到了削弱作用,从而减小了电压 矢量和电流矢量的夹角,有利于提升功率因数。

PMA-SynRM 的输出转矩表达式为

$$T_{e} = \frac{3}{2} p (L_{d} - L_{q}) i_{d} i_{q} + \frac{3}{2} p \psi_{\rm PM} i_{q} \qquad (1)$$

式中:T_e为电磁转矩;p为极对数。

由式(1)可知,增大 d、q 轴的磁路不对称性可 以增加直、交轴电感的差值,从而提高磁阻转矩。 由于永磁体的磁导率接近于空气,将永磁体插入空 气磁障中并不会显著改变 d 轴的磁阻。永磁体的 插入对磁阻转矩的影响较小,其产生的磁链可以增 加永磁转矩,从而提高电机的转矩密度。

2 PMA-SynRM 转子结构设计

2.1 磁障构建

PMA-SynRM 的凸极比较大,磁阻转矩利用率 较高,多层永磁体置于转子铁心内,有较好的弱磁 扩速能力,调速范围广。其转子结构种类较多,有 U形、V形、弧形结构以及多种形状的组合。

本文采用椭圆曲线构建磁障边界线,磁障末 端由贝塞尔曲线 *B*(*t*)构建,使磁障形状具有更多 的可变性。并通过多目标优化方法来优化多层磁 障参数。多层磁障结构的设计变量如图 3 所示。

图 3 中: W_{f1} 为磁障和转子中心之间的距离; W_{f2} 、 W_{f3} 和 W_{f4} 为各层磁障之间的距离; θ_1 、 θ_2 、 θ_3

图 3 PMA-SynRM 的转子参数模型

Fig. 3 Rotor parameters model of PMA-SynRM

和 θ_4 为磁障末端开角; w_1 、 w_2 和 w_3 为各层永磁体的宽度; h_1 、 h_2 和 h_3 为各层永磁体的高度。永磁体嵌在磁障中间,为了满足电磁性能和机械应力的要求,转子切向肋 tr_1 、径向肋 tr_2 宽度设置为 1 mm_2

磁障曲线由多项式组成,如式(2)所示:

$$\begin{cases} \left(\frac{x_i - \frac{w_i}{2} - tr_1}{a^2} + \frac{\left(y_i - \frac{h_i}{2} - tr_1\right)^2}{b^2} = 1\\ x_i = (R_0 - tr_1)\cos\theta_i\\ y_i = (R_0 - tr_1)\sin\theta_i \end{cases}$$
(2)

式中:i=1, 2, 3, 4,由于第四层磁障没有嵌入永 磁体,所以 w_4 的值设置为0; R_0 为转子半径;a、b为方程系数,通过参数优化获取。

二次贝塞尔曲线的路径由给定点 P_1 、 P_2 和 P_3 的函数 B(t)给出,如式(3)所示:

 $B(t) = (1-t)^{2}P_{1} + 2t(1-t)P_{2} + t^{2}P_{3} (3)$ 式中:t∈[0,1];P₁、P₂和P₃的坐标均为(x_i,y_i)。

 P_4 、 P_5 为二次贝塞尔曲线的控制点,通过角 α 控制,且有如式(4)所示的关系:

$$\begin{cases} \frac{P_{1}A}{P_{1}P_{4}} = \frac{AC}{AB} = \frac{P_{4}B}{P_{4}P_{2}} \\ \frac{P_{2}D}{P_{2}P_{5}} = \frac{DF}{DE} = \frac{P_{5}E}{P_{5}P_{3}} \end{cases}$$
(4)

2.2 辅助槽设计

开辅助槽相当于增加原有极槽的最小公倍数,辅助槽的数目、深度和宽度都会影响电机的齿槽转矩。合理设计辅助槽,可以优化气隙磁场的分布,削弱齿槽转矩,有效降低电机运行中的转矩脉动,同时可以增加电机的散热表面积,提高散热效率,进而提高电机的可靠性和寿命。

在进行磁障设计之后,引入一种非对称转子 辅助槽,其结构特点是每个槽的宽度与深度都是 不同的。并与传统的对称辅助槽进行对比,以分 析不同转子辅助槽对转矩性能的影响。图4为三 种不同的转子辅助槽结构。

如图 4(a) 所示,每个辅助槽都是参数化的, 优化参数为槽偏角 β_1 , β_2 和 β_3 ,槽宽 MR_1 , MR_2 和 MR_3 ,其中 β_3 固定为 45°,槽深设置为槽宽的一 半。对称转子辅助槽优化参数与不对称辅助槽类 似,这里不再介绍。

3 PMA-SynRM 多目标优化

3.1 多目标优化流程

PMA-SynRM 多目标优化设计流程如图 5 所示。根据流程图,所提出的优化设计方法主要包括参数灵敏度分析、有限元分析、多目标优化和有限元试验验证 4 个模块。首先,确定电机的优化目标、设计变量和取值范围,并对设计参量进行灵敏度分析,选取对优化目标影响较大的参数作为影响显著变量;然后,利用拉丁超立方采样选取影响显著变量的样本点,通过 Maxwell 进行有限元计算,获得优化目标的响应值;最后,基于 NSGA-II 寻优得到优化目标的 Pareto 解集,建立电机模型进行仿真验证。

3.2 优化目标及待优化参数

PMA-SynRM 的转矩脉动大是其主要缺陷,因此转矩脉动是一个重要的优化目标。为了提高

Fig. 4 Auxiliary slot of rotor

PMA-SynRM 的转矩性能,本文将电机的平均转矩 T_{av} 、转矩脉动 K_{rip} 和齿槽转矩 T_{cog} 设置为优化目标。电机的优化方程如式(5)所示:

 $f = \{\max(T_{av}), \min(K_{rip}), \min(T_{cog})\},\$

$$T \ge 3.9 \text{ N} \cdot \text{m}, K_{\text{rip}} \le 15\% \tag{5}$$

平均转矩、转矩脉动和齿槽转矩的计算式如 式(6)所示:

$$\begin{cases} T_{\rm av} = \int_{t_1}^{t_2} T dt \\ K_{\rm rip} = T_{\rm pp} / T_{\rm av} \\ T_{\rm cog} = -\frac{\partial W}{\partial \alpha} \end{cases}$$
(6)

式中:t₁~t₂为转子转动一个极距所用的时间;T_{pp} 为转矩的峰峰值;W为磁场能量;α为磁场相对于 电机定转子之间的位置角。

PMA-SynRM 性能受到很多参数的影响,其优化涉及多个优化目标、多个参数变量,是一个多维

FENG Wei, et al: Optimized Rotor Design for Permanent Magnet Assisted Synchronous Reluctance Motor with Low Torque Ripple

Fig. 5 PMA SynRM multi-objective optimization flowchart

度优化问题。为了减少试验次数和计算复杂度, 本文选取15个电机本体参数和5个辅助槽参数 作为设计参数,利用拉丁超立方采样选取150组 样本数据进行灵敏度分析。表2为待优化参数的 变化范围。

表 2 待优化参数范围

参数名称	参数值	参数名称	参数值
w_1/mm	8~12	$\theta_1/(\circ)$	35~42
w_2/mm	6~10	$\theta_2/(\circ)$	30~35
<i>w</i> ₃ /mm	5~9	$\theta_3/(\circ)$	25~30
h_1/mm	3~5	$\theta_4/(\circ)$	10~20
h_2/mm	2~4	α/(°)	10~40
h_3 /mm	2~4	MR_1 /mm	0.5~0.8
h_4 /mm	1~3	MR_2/mm	0.8~1.1
$W_{\rm fl}/\rm mm$	2.5~5.5	MR ₃ /mm	1.1~1.5
$W_{\rm f2}/\rm mm$	2.5~5.5	$\beta_1/(\circ)$	15~20
$W_{\rm f3}/\rm mm$	2.5~5.5	$\beta_2/(\circ)$	25~30
$W_{\rm f4}/{ m mm}$	2.5~5.5		

Tab. 2 Range of parameters to be optimized

3.3 灵敏度分析

由于每个设计参数变量对不同优化目标的灵 敏度指标不同,因此引入权重系数来计算每个设 计变量的综合灵敏度指标。综合灵敏度指数 S_{com} 定义为

$$\begin{cases} S_{\text{com}} = \lambda_1 | S_{T_{\text{av}}} | + \lambda_2 | S_{K_{\text{rip}}} | + \lambda_3 | S_{T_{\text{cog}}} | \\ \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{cases}$$
(7)

式中: $S_{T_{av}}$ 、 $S_{K_{rip}}$ 和 $S_{T_{cog}}$ 分别为 T_{av} 、 K_{rip} 和 T_{cog} 的灵 敏度指数; λ_1 、 λ_2 和 λ_3 分别为 T_{av} 、 K_{rip} 和 T_{cog} 的 权重系数。

考虑到 PMA-SynRM 高转矩脉动的特性会严 重影响转矩输出的平稳性,本文将 λ_1 和 λ_2 设置 为 0.4, λ_3 设置为 0.2。设计参数的灵敏度分析结 果如表 3 和图 6 所示。

表 3 参数灵敏度分析结果

Tab. 3 Parameter sensitivity analysis results

参数名称	$S_{T_{av}}$	$S_{K_{rip}}$	$S_{T_{cog}}$	$S_{\rm com}$
w_1	-0.177	-0.274	-0.129	0.206 2
w_2	0.29	0.209	0.306	0.260 8
w_3	-0.104	-0.092	0.217	0.121 8
h_1	-0.174	-0.128	-0.025	0.125 8
h_2	-0.281	-0.294	-0.183	0.266 6
h_3	-0.245	-0.34	-0.197	0.273 4
h_4	-0.315	-0.301	-0.202	0.286 8
$W_{\rm fl}$	-0.022	0.057	-0.024	0.036 4
$W_{\rm f2}$	0.087	0.085	0.044	0.077 6
$W_{\rm f3}$	0.015	0.062	-0.045	0.039 8
$W_{\rm f4}$	-0.038	-0.027	0.009	0.027 8
θ_1	-0.121	-0.135	0.025	0.107 4
θ_2	-0.167	-0.114	0.046	0.121 6
θ_3	-0.337	-0.206	-0.251	0.267 4
θ_4	-0.041	0.203	0.138	0.125 2
α	-0.06	-0.069	-0.071	0.065 8
MR_1	0.103	0.064	0.154	0.097 6
MR_2	-0.028	-0.028	0.117	0.045 8
MR_3	0.016	-0.019	0.195	0.053
$oldsymbol{eta}_1$	-0.173	-0.147	-0.182	0.164 4
$oldsymbol{eta}_2$	-0.226	-0.036	-0.197	0.144 2

根据表 3 中 S_{com} 的值,各层永磁体的宽度 (w_1 、 w_2 和 w_3)、各层永磁体的高度(h_1 、 h_2 、 h_3 和 h_4)、磁障末端开角(θ_1 、 θ_2 、 θ_3 和 θ_4)以及槽偏角 (β_1 、 β_2)的综合灵敏度较高,因此选择这些设计参 数进行多目标优化,而不显著参数的值则通过单 参数优化进行确定。

3.4 多目标优化

基于 NSGA- II 对 PMA-SynRM 进行多目标优 化。NSGA- II 采用快速非支配排序,同时加入锦 标赛机制和精英保留策略,以降低算法复杂度,加 快收敛速度。NSGA- II 流程如图 7 所示。获得的 三维 Pareto 前沿解如图 8(a)所示,三维 Pareto 前 沿解的二维投影图如图 8(b)~图 8(d)所示。

通过上述主要设计参数对电机进行多目标优化,综合考虑较高的平均转矩 T_{av}、较低的转矩脉

图 6 灵敏度分析结果直方图

图 7 NSGA-II 流程图

Fig. 7 NSGA- II flowchart

动 K_{rip} 和齿槽转矩 T_{cog} 后,选择如表 4 所示的优化设计参数值。

4 有限元分析与验证

为了验证所设计不对称辅助槽 PMA-SynRM 的可行性,在有限元软件中建立了优化前后电机 和传统对称转子辅助槽电机的二维模型,对电机 的电磁性能进行比较和分析。

图 9 为本文所提不对称辅助槽 PMA-SynRM 在最佳电机结构下的磁密云图和磁力线分布图。 可以观察到,电机铁心中的铁饱和度和磁力线分

图 8 Pareto 解集

Fig. 8 Pareto solution set

布均匀,而磁通密度在转子肋部达到最大值,约为 2.2 T。

初始电机与经三种转子辅助槽优化后的电机 在转速1500 r/min时的空载反电动势的波形如 图10所示。优化后电机的空载反电动势波形的 正弦度和对称性都高于初始电机,初始电机和经 三种转子辅助槽优化后的空载反电动势幅值分别

为 76.52 V、83.23 V、81.64 V 和 80.61 V,与优化前相比,经三种辅助槽优化后的空载反电动势分别提高了 8.77% 、6.69% 和 5.35%。

表 4 优化参数初始值与优化值 Tab. 4 Initial and optimized values of parameters

	参数值		
参 奴名称	优化前	优化后	
<i>w</i> ₁ /mm	10	8	
w_2/mm	8	8	
w_3/mm	6	8	
h_1 /mm	4	3.5	
h_2/mm	3	3.5	
h_3 /mm	3	2.5	
h_4 /mm	2	2	
$W_{\rm fl}/{ m mm}$	4	5	
$W_{\rm f2}/\rm mm$	4	3.5	
$W_{\rm f3}/\rm mm$	4	3.5	
$W_{\rm f4}/{ m mm}$	4	3.5	
$ heta_1/(\circ)$	38	40	
$\theta_2/(\circ)$	33	34	
$\theta_3/(\circ)$	26	27	
$ heta_4$ /(°)	16	15	
<i>α</i> ∕(°)	17	20	
MR_1/mm	0.5	0.6	
MR_2/mm	0.8	0.9	
MR_3 /mm	1.1	1.2	
$oldsymbol{eta}_1 / (\circ)$	17	18	
β ₂ /(°)	27	26	

对空载反电动势进行快速傅里叶变换,结果如图 11 所示。由图 11 可以看出,经过优化后,电机的反电动势基波幅值均有所提高,谐波畸变率也从初始电机的 11.81%分别降低到优化后的 3.91%、4.28%和 5.47%,总谐波失真分别降低了 66.89%、63.76%和 53.48%。

图 12 为初始电机和分别添加三种类型转子 辅助槽优化后的电机的齿槽转矩波形。由图 12

Fig. 10 Back electromotive force waveforms

图 11 反电动势谐波分析

Fig. 11 Harmonic analysis of back electromotive force

可知,初始电机和添加三种转子辅助槽的电机的齿 槽转矩峰峰值分别为 31.42 mN·m、18.84 mN·m、 19.35 mN·m 和24.85 mN·m。可见,优化后的 PMA-SynRM 的齿槽转矩分别降低了 40.04%、38.41% 和 20.91%。

进一步对初始电机和分别添加三种类型转子 辅助槽优化的最佳电机的转矩性能进行对比分 析,结果如图 13 所示。由图 13 可知,优化后,电 机的平均转矩和转矩脉动都得到了明显改善,平 均转矩从初始电机的 3.86 N·m 分别提高到到

3.97 N·m、3.94 N·m 和3.96 N·m,转矩脉动从 31.68%分别减小到 10.79%、13.94%和 14.45%。

图 13 电磁转矩波形对比

Fig. 13 Comparison of electromagnetic torque waveforms

综上,优化前后的电机转矩性能对比如表 5 所示。由表 5 可知,转子辅助槽的添加明显降低 了 PMA-SynRM 的转矩脉动,对称 2 辅助槽的电 机与对称 4 辅助槽的电机相比能带来相近的平 均转矩与更低的转矩脉动,本文所提的不对称 转子辅助槽的最优电机比对称辅助槽的最优电 机具有更高的平均转矩和更低的转矩脉动、齿 槽转矩。

表 5 电机优化结果对比

Tab. 5 Comparison of motor optimization results

参数名称	初始电机	不对称	对称 2	对称 4
		辅助槽	辅助槽	辅助槽
$T_{\rm av}/({\rm N}\cdot{\rm m})$	3.86	3.97	3.94	3.96
$T_{\rm r}$ /%	31.68	10.79	13.94	14.45
$T_{\rm cog}/({\rm mN} \cdot {\rm m})$	31.42	18.84	19.35	24.85

5 结语

针对 PMA-SynRM 高转矩脉动的缺点,本文 设计并优化了一台低转矩脉动的 PMA-SynRM。 采用函数曲线构建磁障,形成磁障边界线,同时设 计了一种不对称转子辅助槽。以提高平均转矩、 降低转矩脉动和降低齿槽转矩作为优化目标,经 灵敏度分析,在电机的众多参数中选取 11 个电机 本体参数和 2 个辅助槽参数作为主要优化变量。 通过 NSGA-II 寻优得到 3 个优化目标的 Pareto 前 沿解,综合考虑优化目标的重要程度来选取最优 解。有限元仿真表明,本文所设计的不对称转子 辅助槽能使电机在提高平均转矩的同时,有效降 低转矩脉动,具有更好的性能。

参 考 文 献

- [1] 徐媚娟,刘国海,陈前,等.永磁辅助同步磁阻电机设计及其关键技术发展综述[J].中国电机工程学报,2019,39(23):7033-7043+7116.
 XUMM,LIUGH,CHENQ, et al. Design and key technology development of permanent magnet assisted synchronous reluctance motor [J]. Proceedings of the CSEE, 2019, 39(23):7033-7043+7116.
- ZHOU X, ZHU X M, WU W Y, et al. Multiobjective optimization design of variable-saliency ratio
 PM motor considering driving cycles [J]. IEEE Transactions on Industrial Electronics, 2021, 68 (8): 6516-6526.
- [3] CAI H, GUAN B, XU L. Low-cost ferrite PMassisted synchronous reluctance machine for electric vehicles [J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5741-5748.
- [4] 曹恒佩,艾萌萌,王延波.永磁辅助同步磁阻电机研究现状及发展趋势[J].电工技术学报,2022,37(18):4575-4592.
 CAOHP, AIMM, WANGYB. Research status and development trend of permanent magnet assisted synchronous reluctance motor [J]. Transactions of China Electrotechnical Society, 2022, 37 (18): 4575-4592.
- [5] 黄辉, 胡余生. 永磁辅助同步磁阻电机设计与应用[M]. 北京: 机械工业出版社, 2017.
 HUANG H, HU Y S. Design and Application of Permanent Magnet Assisted Synchronous Reluctance Motor [M]. Beijing: China Machine Press, 2017.
- [6] MOHANARAJAH T, THUSHANTHAN M, RIZK J, et al. Permanent magnet optimization in PM assisted synchronous reluctance machines [C]//2018 IEEE 27th International Symposium on Industrial Electronics, Cairns, 2018.
- [7] DU X, LIU G, CHEN Q, et al. Optimal design of an inset PM motor with assisted barriers and magnet shifting for improvement of torque characteristics
 [J]. IEEE Transactions on Magnetics, 2017, 53 (11): 1-4.
- [8] BIANCHI N, BOLOGNANI S, BON D, et al. Rotor flux barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors [J]. IEEE Transactions on Industry Applications, 2009, 45(3): 921-928.

FENG Wei, et al: Optimized Rotor Design for Permanent Magnet Assisted Synchronous Reluctance Motor with Low Torque Ripple

- [9] 郑诗玥,朱孝勇,徐磊,等. 永磁助磁式同步磁阻 电机高转矩质量比设计与性能分析[J]. 中国电 机工程学报, 2022, 42(19): 7236-7248.
 ZHENG S Y, ZHU X Y, XU L, et al. Design and performance analysis of PM-assisted synchronous reluctance motor considering high torque-quality ratio
 [J]. Proceedings of the CSEE, 2022, 42(19): 7236-7248.
- [10] LIU H C, KIM I G, OH Y J, et al. Design of permanent magnet-assisted synchronous reluctance motor for maximized back-EMF and torque ripple reduction [J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4.
- [11] 陈彬,李霞,肖勇,等. 基于转矩分离的永磁辅助 同步磁阻电动机转矩脉动抑制[J]. 电机与控制 应用, 2022, 49(12): 53-59.
 CHEN B, LI X, XIAO Y, et al. Suppression of torque ripple for permanent magnet-assisted synchronous reluctance motor based on torque separation [J]. Electric Machines & Control Application, 2022, 49(12): 53-59.
- [12] LIU C C, WANG K L, WANG S P, et al. Torque ripple reduction of synchronous reluctance machine by using asymmetrical barriers and hybrid magnetic core
 [J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 13-20.
- [13] WU Z C, FAN Y, LEE C H T, et al. Vibration optimization of FSCW-IPM motor based on iron-core modification for electric vehicles [J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14834-14845.
- WAN X B, YANG S, LI Y C, et al. Minimization of cogging torque for V-type IPMSM by the asymmetric auxiliary slots on the rotor [J]. IEEE Access, 2022, 10: 89428-89436.
- [15] SUN K, TIAN S P. Multiobjective optimization of IPMSM with FSCW applying rotor notch design for torque performance improvement [J]. IEEE Transactions on Magnetics, 2022, 58(5): 1-9.

- [16] KASHIF M, SINGH B. Design of a new spoke-PMSM with multiple flux barriers considering fluxintensifying effect for SWPS [C]//2021 IEEE 12th Energy Conversion Congress & Exposition-Asia, Singapore, 2021.
- [17] 丁锦,姜文刚. 基于拉丁超立方算法的永磁同步 电机设计优化[J]. 电机与控制应用, 2023, 50 (8): 66-72.
 DING J, JIANG W G. Design optimization of permanent magnet synchronous motors based on Latin hypercube algorithm [J]. Electric Machines & Control Application, 2023, 50 (8): 66-72.
- [18] ZHANG H, LIU C, ZANG S, et al. Rotor auxiliary slot design optimization for permanent magnet synchronous motor with double-layer rotor structure for electric vehicle [C]//2023 IEEE International Magnetic Conference-Short Papers, Sendai, 2023.
- [19] 华逸舟,刘奕辰,潘伟,等.基于改进粒子群算法的无轴承永磁同步电机多目标优化设计[J].中国电机工程学报,2023,43(11):4443-4452.
 HUA Y Z, LIU Y C, PAN W, et al. Multi-objective optimization design of bearingless permanent magnet synchronous motor using improved particle swarm optimization algorithm [J]. Proceedings of the CSEE, 2023, 43(11): 4443-4452.
- [20] MOHAMMED M S, VURAL R A. NSGA-II + FEM based loss optimization of three-phase transformer
 [J]. IEEE Transactions on Industrial Electronics, 2018, 66(9): 7417-7425.

收到修改稿日期:2024-06-05

冯 魏(2000-),男,硕士研究生,研究方向为永磁辅助同步磁阻电机结构设计,2572125241@qq.com;

*通信作者:郭凯凯(1987-),男,博士,副教授,研究方向为永磁电机结构及其控制系统设计,guokai0072000@gmail.com。

收稿日期:2024-05-18

作者简介:

Optimized Rotor Design for Permanent Magnet Assisted Synchronous Reluctance Motor with Low Torque Ripple

FENG Wei, GUO Kaikai*

(School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China)

Key words: permanent magnet assisted synchronous reluctance motor; multi-objective optimization; auxiliary slot; torque ripple; NSGA-II

Permanent magnet assisted synchronous reluctance motor (PMA-SynRM) is widely used in applications such as electric vehicle drive motors, air conditioner compressors, fans, and household appliances due to its high saliency ratio, wide speed range, high efficiency, and low permanent magnet usage. By incorporating a small amount of permanent magnets into the air barriers, PMA-SynRM effectively reduces motor costs and dependence on rare earth resources.

This paper proposed a multi-objective optimization design method for PMA-SynRM based on the non-dominated sorting genetic algorithm II (NSGA-II), focusing on improving the average torque, reducing torque ripple, and minimizing

Fig. 1 Model of PMA-SynRM

cogging torque. First, the model of PMA-SynRM was constructed, as shown in Fig. 1, and the rotor structure of PMA-SynRM was improved bv constructing air barriers and designing asymmetric auxiliary slots. Then, sensitivity analysis was conducted to identify the parameters that significantly affect the optimization objectives of PMA-SynRM, followed by multi-objective optimization using NSGA-II to select the optimal structural parameters for the motor's performance. Finally, a comparison of the torque performance between the optimized motor and the initial motor was conducted using finite element analysis software, with results shown in Tab. 1. Simulation results demonstrated that the optimized motor with asymmetric auxiliary slots achieved higher average torque, lower torque ripple, and reduced cogging torque.

 Tab. 1
 Performance comparison of motors with different structures

Parameter name	Original motor	Asymmetric auxiliary slot	Symmetric 2 auxiliary	Symmetric 4 auxiliary
			slot	slot
$T_{\rm av}/({\rm N}\cdot{\rm m})$	3.86	3.97	3.94	3.96
$T_{\rm r}$ /%	31.68	10.79	13.94	14.45
$T_{\rm cog}/({\rm mN} \cdot {\rm m})$	31.42	18.84	19.35	24.85