DOI:10.12177/emca.2024.125 文章编号:1673-6540(2024)11-0097-13 中图分类号:TM 734

文献标志码:A

基于灰狼优化的改进粒子群算法求解环境 经济调度问题

刘虹伶,时维国* (大连交通大学 电气工程学院,辽宁 大连 116028)

Solving Environmental Economic Dispatch Problem Using an Improved Particle Swarm Optimization Algorithm Based on Grey Wolf Optimization

LIU Hongling, SHI Weiguo*

(School Electrical Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract: [Objective] To effectively solve the environmental economic dispatch problem in power systems, this paper proposed an improved particle swarm optimization (PSO) algorithm based on grey wolf optimization (GWO) to optimize both the fuel costs and pollutant emissions. [Methods]First, the refracted opposition-based learning of refraction was applied to the initial particle swarm to generate inverse solutions, hereby enhancing population diversity. During the algorithm's iteration process, the GWO algorithm was combined with PSO to guide the elite individuals in the particle swarm to conduct optimal searches, improving PSO's optimization capability and convergence accuracy. In the later stages of the algorithm, to address the drawback where the particle swarm easily fell into local optima, Tent chaotic mapping was used to perturb the optimal particles. The individual best and global best positions of the particle swarm were then updated based on the fitness values. [Results] The improved algorithm was applied to 6-unit and 40-unit generator systems with different load demands. The convergence curves of the proposed algorithm, PSO algorithm. And GWO algorithm were compared for solving the power system, and the results showed that the proposed improved algorithm converged to the optimal value more quickly and resulted in the lowest fuel cost. [Conclusion] The improved algorithm proposed in this paper effectively solves complex constrained optimization problems and performs well in optimization accuracy and stability.

基金项目: 辽宁省教育厅科学研究项目(LJKMZ20220828, LJKZ0489);四川省重点实验室开放基金项目(2020RYJ04) **Key words**: particle swarm optimization; refracted opposition-based learning; grey wolf optimization; chaotic mapping; environmental economic dispatch

摘 要:【目的】为有效地求解电力系统环境经济调度问 题,本文以同时优化燃料成本和污染排放量为研究目标, 提出了一种基于灰狼优化(GWO)的改进粒子群优化 (PSO)算法。【方法】首先对初始粒子群采用折射反向学 习产生反向解,以此提高种群的多样性;在算法迭代过程 中,结合 GWO 算法,引导粒子群中的优秀个体进行寻优 搜索,提高 PSO 算法的寻优能力和收敛精度;在算法迭代 后期,针对粒子群易陷入局部最优解的缺点,使用 Tent 混 沌映射对最优粒子进行扰动,根据适应度值更新粒子群 个体最优值、全局最优值的位置。【结果】将改进算法应 用于不同负荷需求的6单元发电机组和40单元发电机 组,对比本文算法与 PSO 算法和 GWO 算法求解电力系统 的收敛曲线。结果表明,本文所提改进算法能更快收敛 到最优值,且最后的燃料成本最低。【结论】本文所提改 进算法能更好地解决复杂约束优化问题,在寻优精度和 稳定性方面表现较好。

关键词: 粒子群优化; 折射反向学习; 灰狼优化; 混沌映射; 环境经济调度

0 引言

煤、石油以及天然气等不可再生能源燃烧会 排放氮氧化合物和二氧化碳有害气体,这些气体 导致全球变暖,故同时考虑燃料成本与污染气体 排放两个目标的环境经济调度变得十分必要。

环境经济调度是一个非线性、强约束和多峰 值的多目标优化问题。传统数学优化算法虽然能

The Scientific Research Project of Liaoning Education Department of China (LJKMZ20220828,LJKZ0489); The Sichuan Key Laboratory of Artificial Intelligence Open Fund(2020RYJ04)

够求出问题最优解,但问题维数越大时,求解效率 越低。现多用启发式算法^[19]解决多目标优化问 题,与传统数学优化算法相比,启发式算法在求解 速度和全局寻优能力上优越性较强。

针对粒子群优化 (Particle Swarm Optimization, PSO)算法处理复杂多峰值优化问题 时,算法易早熟、后期收敛精度不高等问题,学者 们进行了大量研究,并提出了解决方法。文献 [10]结合适应度值大小决定 PSO 算法是采取全 局更新还是局部搜索。文献[11]提出随机性权 重自适应调整粒子群算法。文献[12]利用归一 化法将多目标环境经济问题转化为单目标优化问 题,基于调节含有均匀分布的参数对粒子位置进 行更新,对全局最优粒子进行扰动,以平衡全局和 局部寻优能力,通过对多个系统进行测试,证实了 改进粒子群算法能够找到更好的调度解。文献 [13]利用差分进化(Differential Evolution, DE)算 法和 PSO 算法对种群并行进化。文献 [14] 通过 正交设计粒子群算法,并引入混沌映射以提高算 法的全局寻优能力。文献[15]提出了一种结合 反向学习策略和差分进化的改进粒子群算法。虽 然以上的解决方法取得了较好的寻优结果,但算 法在搜索后期易陷入局部最优。

针对上述问题,本文提出一种改进的 PSO 算 法。该算法对初始粒子群采用折射反向学习产生 反向解,旨在得到多样性丰富的优质初始粒子种 群。并根据适应度值选取粒子群的前三个优秀个 体作为灰狼优化(Grey Wolf Optimization, GWO) 算法搜索过程中的引导者,以弥补粒子只跟踪个 体最优和全局最优的缺陷,以此来平衡粒子群算 法的寻优,提高算法局部以及全局开采能力。在 搜索后期,利用混沌映射对种群中的最优粒子进 行更新,增强算法精细化搜索精度。为验证算法 的性能将改进算法用于求解电力系统的环境经济 调度问题,相对于其他算法,在满足约束条件下所 研究的 4 个电力系统的经济成本较小且污染排放 量较低。

1 经济调度数学模型

1.1 目标函数

(1) 燃料成本

机组单元的燃料成本的经典表达式为

$$\begin{cases} F_{i}(P_{i}) = a_{i} + b_{i}P_{i} + c_{i}P_{i}^{2} \\ F = \sum_{i=1}^{n} F_{i}(P_{i}) \end{cases}$$
(1)

式中: F_i 为第i组发电机组的燃料成本; a_i 、 b_i 和 c_i 为第i组发电机组的燃料成本系数; P_i 为第i组发电机组的输出功率;n为发电机组总数。

汽轮机的进气阀开启时的拔丝现象会导致机 组发电成本曲线产生阀点效应。其相应的目标函 数会受到非线性波动,此条件下式(1)变为

$$\begin{cases} F'_{i}(P_{i}) = a_{i} + b_{i}P_{i} + c_{i}P_{i}^{2} + \\ |f_{i}\sin[e_{i}(P_{i}^{\min} - P_{i})]| \\ F' = \sum_{i=1}^{n} F'_{i}(P_{i}) \end{cases}$$
(2)

式中: F'_i 为受到非线性波动时第 i 组发电机组的 燃料成本; e_i , f_i 为第 i 组发电机的阀点效应系数; P_i^{\min} 为第 i 组发电机组的输出功率下限。

(2) 污染物排放量

排放优化是使传统火电发电机产生污染气体 的排放量最小化,污染物排放量表达式为 $\begin{cases} E_i(P_i) = 10^{-2} \times (\alpha_i + \beta_i P_i + \gamma_i P_i^2) + \xi_i \exp(\lambda_i P_i) \\ E = \sum_{i=1}^{n} E_i(P_i) \end{cases}$ (3)

式中: E_i 为第 i 组发电机组的污染物排放量; α_i 、 β_i 、 γ_i 、 ξ_i 和 λ_i 为第 i 组发电机组的污染物排放量 系数。

通过一种改进的惩罚因子将双目标优化问题 转化为单目标优化问题。价格惩罚因子定义为机 组*i*最大的燃料成本与污染排放量之比,定义总 负荷需求下的价格惩罚因子需要进行如下步骤:

$$f = \mu F + (1 - \mu)hE \tag{4}$$

式中:f为环境经济调度的总成本; μ为折衷系数; h为价格惩罚因子,其表达式为

$$h_i = \frac{F(P_i^{\max})}{E(P_i^{\max})} \tag{5}$$

式中:Piax 为第 i 组发电机组的输出功率上限。

对 h 进行升序排序,将排序之后的惩罚因子 对应的发电机组的输出功率相加,直到满足 $\sum_{j=0}^{i} P_{j}^{\max} \ge P_{load}, P_{load}$ 为电力系统的负荷需求,满足 此条件所对应的最后一个 h_{i} 即为所对应负荷需

求的价格惩罚因子 h。

1.2 约束条件

环境经济调度的约束条件包括电力平衡约 束、运行约束等。

(1) 电力平衡约束

电力平衡约束是指为了平衡电力,需考虑功 率传输损耗,因此电力系统的总发电量应该等于 整个系统的负载与传输损失之和^[9],即:

$$\sum_{i=1}^{n} P_{i} - P_{\text{load}} - P_{1} = 0$$
 (6)

式中:P1为线路传输损耗,其表达式为

$$P_{1} = \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i}B_{ij}P_{j} + \sum_{j=1}^{n} P_{i}B_{i0} + B_{00} \quad (7)$$

式中: B_{ij} 、 B_{i0} 和 B_{00} 为发电系统网络损耗系数。

(2) 运行约束

每台发电机组的输出功率都有最高功率和最 低功率限制,以维持系统的稳定运行,即:

$$P_i^{\min} \le P_i \le P_i^{\max} \tag{8}$$

2 改进粒子群优化经济调度算法

2.1 PSO 算法

在一个 D 维搜索空间中, 粒子群中有 N 个粒 子, 粒子的位置为 $X_i = (x_{i1}, x_{i2}, x_{id}, \dots, x_{iD}), i = 1,$ 2, …N; 粒子的速度为 $V_i = (v_{i1}, v_{i2}, v_{id}, \dots, v_{iD}),$ 粒 子速度更新和位置更新如式(9) 和式(10) 所示:

$$v_{id}(t+1) = \omega v_{id}(t) + c_1 r_1 [pbest_{id} - x_{id}(t)] + c_2 r_2 [gbest_{id} - x_{id}(t)]$$
(9)

$$x_{id}(t+1) = v_{id}(t+1) + x_{id}(t)$$
(10)

式中: $v_{id}(t+1)$ 、 $x_{id}(t+1)$ 分别为第i个粒子在t+1代的速度、位置; ω 为惯性权重; c_1 、 c_2 为社会学习系数; r_1 、 r_2 为[0,1]上服从均匀分布的随机数; pbest_{id}、gbest_{id}分别为粒子的个体最优值、全局最优值。

2.2 基于折射反向学习的种群初始化

基于折射原理的反向学习可以拓宽粒子的搜 索空间,提高种群的多样性^[16]。粒子群初期可以 通过折射反向学习提升其全局搜索能力。折射反 向学习表达式为

$$x_{i,j}^{\text{op}} = (x_j^{\min} + x_j^{\max})/2 + (x_j^{\min} + x_j^{\max})/(2kn) - x_{i,j}/(kn)$$
(11)

式中: $x_{i,j}$ 为第i个粒子的j维的值; $x_{i,j}^{op}$ 为 $x_{i,j}$ 基于 折射反向学习的反向解; x_{j}^{min} 、 x_{j}^{max} 分别为粒子种 群的 j 维的最小值和最大值; k 为折射率; n 为入 射光线与反射光线的比例。

$$x_{i,j}^{\text{op'}} = (x_j^{\min} + x_j^{\max}) - x_{i,j}$$
(12)

式(12)为一般的反向学习表达式。可知一般反向学习是折射反向学习的一种特例。通过调整 k 可以提高种群的多样性和算法的寻优精度,同时提高全局寻优能力^[17]。

2.3 基于 GWO-PSO 算法的位置更新

PSO 算法收敛速度快、参数少,但在算法后期,所有粒子均朝着全局最优值学习,导致多样性不足。针对以上问题,引入 GWO 算法。GWO 算法是一种模拟灰狼捕食猎物的优化方法,狩猎分为追踪,包围和攻击三个阶段。 α 狼、 β 狼和 δ 狼 是灰狼的领导狼。假设灰狼种群规模为 N,搜索 空间为 D 维,第 *i* 只灰狼的位置为 $X_i = (x_{i1}, x_{i2}, x_{i4}, \dots, x_{in})$ 。则狼群攻击猎物的模型为

$$\boldsymbol{X}_{1} = \boldsymbol{X}_{\alpha} + \boldsymbol{A}_{1} \cdot |\boldsymbol{C}_{1} \cdot \boldsymbol{X}_{\alpha} - \boldsymbol{X}| \qquad (13)$$

$$\boldsymbol{X}_{2} = \boldsymbol{X}_{\beta} + \boldsymbol{A}_{2} \cdot |\boldsymbol{C}_{2} \cdot \boldsymbol{X}_{\beta} - \boldsymbol{X}| \qquad (14)$$

$$\boldsymbol{X}_{3} = \boldsymbol{X}_{\delta} + \boldsymbol{A}_{3} \cdot |\boldsymbol{C}_{3} \cdot \boldsymbol{X}_{\delta} - \boldsymbol{X}| \qquad (15)$$

$$X(t+1) = \frac{X_1 + X_2 + X_3}{2}$$
(16)

狼群围猎的数学模型为

 $X(t+1) = X_p(t) + A \cdot |C \cdot X_p(t) - X(t)|(17)$ 式中:X 为灰狼个体位置;Xp 为猎物位置;A、C 为 系数向量;A₁、A₂和A₃根据式(18)确定;C₁、C₂和 C₃根据式(19)确定:

$$A_i = 2ar_1 - a, i = 1, 2, 3$$
 (18)

$$C_i = 2r_2, \ i = 1, 2, 3$$
 (19)

$$a(t) = 2 - 2\frac{t}{MaxIter}$$
(20)

式中:a 为距离控制参数;t 为当前迭代的次数; MaxIter 为最大迭代次数。

GWO 算法位置更新受多个优秀个体引导,但 缺点是缺乏个体自身的经验以及与群体位置的经 验。故用 GWO 算法和 PSO 算法并行寻优,既弥 补了两个算法的缺点,又丰富了信息搜索行为,提 高了算法跳出局部最优的概率。

2.4 最优个体的 Tent 混沌映射

在算法收敛后期,种群容易陷入局部最优。 混沌映射产生的混沌序列具有遍历性、分布均匀 等优点。采用 Tent 混沌映射^[18]对当前粒子种群

最优个体进行学习,具体操作如式(21)~式(23) 所示:

$$X_{\rm T} = \begin{cases} 2x_{\rm t}, & 0 \le x_{\rm t} \le 0.5\\ 2(1 - x_{\rm t}), & 0.5 < x_{\rm t} \le 1 \end{cases}$$
(21)

式中: X_{T} 为混沌变量; x_{L} 为[0,1]上服从均匀分布的随机数。

$$P_{i,d}^{\text{chaos}} = P_{i,d} + X_{\text{T}} \times (P_d^{\text{best}} - P_{i,d}) \qquad (22)$$

$$P_{i,d}^{\text{new}} = \eta P_{i,d} + (1 - \eta) P_{i,d}^{\text{chaos}}$$
(23)

式中: $P_{i,j}^{chaos}$ 为由 X_{T} 生成的混沌扰动量; η 为[0, 1]上服从均匀分布的随机数; P_{d}^{best} 为最优粒子的 第 d 维的值; $P_{i,d}^{new}$ 为 $P_{i,d}$ 经混沌扰动后位置更新 粒子。

2.5 改进的 PSO 算法在环境经济调度中的应用

将改进的 PSO 算法用于求解环境经济调度的步骤如下。

(1) 参数设置

设置火电机组的燃料成本系数、污染物排放 量系数、负荷需求以及输出功率上下限;设置算法 种群大小、最大迭代次数、系数 c₁、c₂ 以及惯性权 重参数 ω。

(2) 初始化

发

G4

G5

G6

随机产生满足发电机输出功率上下限的粒子,并初始化粒子的速度。对粒子进行约束条件处理,计算出粒子的适应度值,确定种群的个体最优值和全局最优值。

(3) 粒子种群更新

利用基于折射的反向学习对粒子种群进行更 新,根据适应度值进行排序,取种群规模大小作为 新的粒子群。

(4) 基于 GWO-PSO 算法的位置更新

0.05

0.05

0.05

1.2

1.0

0.6

将适应度值最优的前三个粒子分别设置为灰 狼的 α 狼 β 狼和 δ 狼,按照式(20)更新 a,按照 式(18)和式(19)更新 *A_i* 和 *C_i*,按照式(16)更新 *X* 的位置。

(5) 最优个体的 Tent 混沌映射

根据式(21)对粒子进行混沌映射扰动。根据适应度值进行排序,更新粒子群个体最优值、全局最优值以及α狼,β狼和δ狼的位置。

(6) 条件判断

判断是否达到终止条件,若已达到终止条件, 算法结束,输出最优解;否则返回第四步进行迭代 循环。

3 仿真分析

本文选取了负荷需求分别为 2.834 p.u.、 1 000 MW 和1 200 MW 的6 单元发电机组以及负 荷需求为10 500 MW 的40 单元发电机组四个测 试系统。各项参数设置如下:种群数目大小为 100;最大迭代次数 *MaxIter* = 10 000;学习因子 c_1 和 c_2 为2; ω_{min} = 0.4; ω_{max} = 0.75。

3.1 测试系统1

将本文所提算法应用于系统负载为 2.834 p.u. 的 6 单元发电机组的测试系统,考虑线路传输损 失与发电机输出功率上下限约束。机组参数和其 他输入数据如表 1 所示。

分别以最优燃料成本和最优污染排放量为优 化目标,将本文所提改进算法得到的结果和其他 文献中的改进细菌觅食算法(Modified Bacterial Foraging Algorithm, MBFA)^[19]、改进全局粒子群优 化(New Global Particle Swarm Optimization, NGPSO)算法^[12]、PSO^[5]算法、改进的黏菌算法 (Improved Slime Mould Algorithm, ISMA)^[5]以及 多目标囊袋群算法(Multi-Objective Tunicate Swarm Algorithm, MOTSA)^[20]的仿真结果进行对 比,结果如表 2 和表 3 所示。

> λ_i 2.857 3.333 8.000

2.000

8.000

6.667

表1 6单元发电机组测试数据(P_{lead}=2.834 p.u.)^[12]

	14071	1000 0000 101 0		50	5,5	load	-100 - pro	,		
电机序号	$P_i^{\min}/(\text{p.u.})$	$P_i^{\max}/(\text{p.u.})$	a_i	b_i	c_i	α_i	$oldsymbol{eta}_i$	$\boldsymbol{\gamma}_i$	$\boldsymbol{\xi}_i$	
G1	0.05	0.5	10	200	100	4.091	-5.554	6.490	2.0e-4	
G2	0.05	0.6	10	150	120	2.543	-6.047	5.638	5.0e-4	
G3	0.05	1.0	20	180	40	4.258	-5.094	4.586	1.0e-6	

100

180

150

60

40

100

5.326

4.258

6.131

-3.550

-5.094

-5.555

3.380

4.586

5.151

2.0e-3

1.0e-6

1.0e-5

10

20

10

Tab. 1 Test data for 6-unit generator systems $(P_{1,...} = 2.834 \text{ p.u.})^{[12]}$

ז	Га b. 2	Optimal fuel co	st for 6-unit g	enerator systen	ns ($P_{\text{load}} = 2.834$	4 p.u.)	
参数名称		本文算法	MBFA ^[19]	NGPSO ^[12]	PSO ^[5]	ISMA ^[5]	MOTSA ^[20]
	P_{G1}	0.121 1	0.114 1	0.120 9	0.123 1	0.121 0	0.098 2
	$P_{\rm G2}$	0.286 3	0.310 8	0.286 3	0.289 9	0.286 6	0.308 9
心古相经也去去公	P_{G3}	0.583 6	0.599 4	0.583 5	0.583 3	0.583 8	0.519 4
反电机输出切举/(p.u.)	$P_{\rm G4}$	0.992 5	0.981 6	0.992 8	0.984 0	0.992 5	1.030 6
	P_{G5}	0.524 1	0.504 8	0.523 9	0.523 7	0.523 2	0.517 1
	$P_{\rm G6}$	0.351 7	0.355 9	0.351 8	0.351 5	0.352 1	0.385 7
燃料成本/(\$ •h⁻	1)	605.998 3	607.670 0	605.998 3	606.006 0	605.998 0	605.976 1
污染排放量/(t•h ⁻	1)	0.220 7	0.219 8	0.220 7	0.220 0	0.220 6	0.223 0

表 2 6 单元发电机组最优燃料成本(P_{load} = 2.834 p.u.) Tab. 2 Optimal fuel cost for 6-unit generator systems (P., = 2.834 p.u.)

表 3 6 单元发电机组最优污染排放量(P_{load} = 2.834 p.u.)

Tab. 3	Optimal	emission f	for (5-unit	generator systems	: (1	$P_{\text{load}} = 2.834$	p.u.)
--------	---------	------------	-------	--------	-------------------	-------	---------------------------	------	---

参数名称		本文算法	MBFA ^[19]	NGPSO ^[12]	PSO ^[5]	ISMA ^[5]	MOTSA ^[20]
	P_{G1}	0.401 9	0.405 5	0.410 9	0.418 5	0.409 0	0.431 4
	P_{G2}	0.456 0	0.460 9	0.463 6	0.433 2	0.467 8	0.460 7
	P_{G3}	0.567 3	0.544 4	0.544 5	0.527 9	0.536 3	0.551 9
反电机输出切举/(p.u.)	$P_{\rm G4}$	0.379 0	0.389 6	0.390 3	0.436 2	0.385 8	0.409 4
	P_{G5}	0.560 8	0.544 0	0.544 4	0.536 7	0.553 5	0.509 7
	$P_{\rm G6}$	0.503 2	0.513 4	0.515 4	0.516 8	0.516 6	0.511 2
燃料成本/(\$ ·h⁻	1)	645.700 7	644.430 0	646.210 0	642.339 1	646.660 9	646.909 7
污染排放量/(t·h ⁻	⁻¹)	0.194 2	0.194 2	0.194 2	0.194 3	0.194 2	0.194 3

由表 2 可知,在保证较低的污染排放量下,本 文算法求得的燃料成本为 605.998 3 \$/h,低于 MBFA 和 PSO 算法;与 ISMA 和 NGPSO 算法持 平;略高于 MOTSA,但 MOTSA 的污染排放量高于 本文算法结果。

由表3可知,本文算法的最优污染排放量为 0.1942t/h,低于PSO算法与MOTSA的仿真结 果;与MBFA、NGPSO算法以及ISMA的仿真结果 相同,但本文算法的燃料成本低于NGPSO算法、 ISMA和MOTSA的燃料成本。可见,本文算法相 较于其他算法具有较强的竞争性。 折衷系数μ取值范围为[0,1]。当μ=1时, 发电机组以燃料成本为目标函数;当μ=0时,发 电机组以污染排放量为目标函数。为得到该发电 机组的 Pareto 前沿,将μ从0到1间隔0.1取值, 并用本文算法进行仿真,得到6单元发电机组在 μ取不同值时对应的燃料成本以及污染排放量, 如表4所示。

图 1 为 6 单元发电机组的 Pareto 解集的最优 前沿;图 2 为 6 单元发电机组在负荷需求为 2.834 p.u.时,本文所提改进算法、PSO 算法和 GWO 算 法的收敛曲线。

表 4 不同的 μ 对应的燃料成本及污染排放量 Tab. 4 Fuel cost and emission for different μ values

μ	$P_{\rm G1}/(\rm p.u.)$	$P_{\rm G2}/({\rm p.u.})$	$P_{G3}/(p.u.)$	$P_{\rm G4}/({\rm p.u.})$	$P_{\rm G5}/({\rm p.u.})$	$P_{\rm G6}/({\rm p.u.})$	燃料成本/(\$・h ⁻¹)	污染排放量/(t•h ⁻¹)
1	0.121 1	0.286 4	0.583 6	0.992 5	0.524 1	0.351 7	0.220 7	605.99
0.9	0.196 8	0.340 8	0.553 7	0.851 7	0.524 7	0.392 0	0.208 9	608.54
0.8	0.247 6	0.379 6	0.539 8	0.752 0	0.522 2	0.419 6	0.202 9	613.29
0.7	0.284 3	0.407 7	0.530 8	0.680 3	0.519 7	0.439 5	0.199 6	618.23
0.6	0.311 6	0.428 6	0.524 3	0.627 7	0.517 8	0.453 5	0.197 7	622.67
0.5	0.334 0	0.447 2	0.519 3	0.584 0	0.515 1	0.465 4	0.196 5	626.93
0.4	0.351 5	0.460 9	0.516 2	0.549 5	0.513 2	0.474 7	0.195 7	630.67
0.3	0.365 6	0.473 1	0.513 5	0.521 1	0.511 7	0.482 0	0.195 2	633.80
0.2	0.377 5	0.482 8	0.511 5	0.497 7	0.510 5	0.488 0	0.194 9	636.61
0.1	0.387 9	0.491 1	0.509 3	0.477 7	0.509 4	0.493 3	0.194 7	639.15
0	0.401 8	0.455 9	0.567 3	0.378 9	0.560 8	0.503 2	0.194 2	645.70

图 1 6 单元发电机组 Pareto 解集

由图 2 可知,本文算法比 PSO 算法和 GWO 算法更快地收敛到最优值,且燃料成本更低。

表 5 为本文所提算法与 NGPSO 算法、MBFA
和非支配排序细菌觅食(Non-Denominated Sorting
Bacteria Foraging, NSBF) ^[21] 算法在最优折衷解时
的燃料成本和污染排放量的仿真结果对比。

表 5 6 单元发电机组最优折衷解(P_{load} = 2.834 p.u.)

Tab. 5 Optimal compromise solutions for fuel cost and emission minimization for 6-unit generator system ($P_{tool} = 2.834$ p.u.)

	load	I · · · · /
質法夕称	燃料成本	污染排放量/
并因有你	$/(\$ \cdot h^{-1})$	$(t \cdot h^{-1})$
本文算法	613.290 0	0.202 9
NGPSO ^[12]	623.870 5	0.196 9
MBFA ^[19]	616.496 0	0.200 2
NSBF ^[21]	617.953 1	0.200 0

由表 5 可知,本文算法在最优折衷解时的污染排放量比其他算法略高,但燃料成本较低。因此,本文算法对于其他三种算法的仿真数据具有 较强的表现性。

3.2 测试系统 2

将本文所提算法应用于系统负载分别为 1000 MW 和1200 MW 的6单元发电机组的测试 系统,考虑线路传输损失与发电机输出功率上下 限约束。机组参数以及其他输入数据如表 6 所示。

			č	•	(Ioau		1040	,		
1	发电机序号	P_i^{\min}/MW	$P_i^{\rm max}/{ m MW}$	a_i	b_i	c_i	α_i	$oldsymbol{eta}_i$	$\boldsymbol{\gamma}_i$	
	G1	10	125	756.798 86	38.539 75	0.152 47	0.004 19	0.327 67	13.859 3	
	G2	10	150	451.325 13	46.159 16	0.105 87	0.004 19	0.327 67	13.859 3	
	G3	35	225	1 049.997 7	40.396 55	0.028 03	0.006 83	-0.545 51	40.266 9	
	G4	35	210	1 243.531 1	38.305 53	0.035 46	0.006 83	-0.545 51	40.266 9	
	G5	130	325	1 658.559 6	36.327 82	0.021 11	0.004 61	-0.511 16	42.895 5	
	G6	125	315	1 356.659 2	38.270 1	0.017 99	0.004 61	-0.511 16	42.895 5	

表 6 6 单元发电机组测试数据($P_{load} = 1\ 000\ MW \& P_{load} = 1\ 200\ MV$)^[12] Tab. 6 Test data for 6-unit generator systems ($P_{load} = 1\ 000\ MW \& P_{load} = 1\ 200\ MV$)^[12]

电力系统负荷需求为1000 MW时,分别以 最优污染排放量和最优燃料成本为优化目标,将 本文所提改进算法得到的仿真结果和其他文献的 应用的萤火虫算法(Firefly Algorithm, FA)^[1]、蝙 蝠算法(Bat Algorithm, BA)^[1]的仿真结果进行对 比,结果如表7和表8所示。

由表 7 可知,以最优污染排放量为优化目标时,本文算法的燃料成本为 554 56.48 \$/h,低于 FA和BA;污染排放量为 837.77 t/h,与 FA和BA 持平。

由表8可知,以最优燃料成本为优化目标时,

本文算法的燃料成本为 554 56.48 \$/h, 虽比 FA 和 BA 的燃料成本略高, 但本文算法的污染排放 量低于 FA 和 BA。

表9为电力系统负荷需求为1000 MW,本文 所提算法与蝗虫算法(Grasshopper Optimization Algorithm, GOA)^[23]、自适应量子粒子群优化 (Quantum Particle Swarm Optimization with Adaptive Local Attractor, ALA-QPSO)算法^[24]、改 进量子粒子优化群(Enhanced Quantum Particle Swarm Optimization, EQPSO)算法^[24]、萤火虫和蝙 蝠混合(Firefly and Bat Hybridization, HYB)算

法^[1]以及 RRA(Runner-Root Algorithm)^[25]在最优 折衷解时的燃料成本和污染排放量的仿真结果 对比。

表 7 6 单元发电机组最优污染排放量(P_{load} = 1 000 MW)

 Tab. 7
 Optimal emission for 6-unit generator systems

	$(P_{\text{load}} = 1 \text{ 000 MW})$						
参数名称		本文算法	FA ^[1]	BA ^[1]			
	$P_{\rm G1}$	125.000 0	125.000 0	125.000 0			
	$P_{\rm G2}$	150.000 0	150.000 0	150.000 0			
发电机输出功率	P_{G3}	157.047 4	156.219 1	156.270 4			
/MW	$P_{\rm G4}$	154.563 9	155.264 4	155.155 9			
	P_{G5}	224.061 4	224.061 8	224.057 7			
	$P_{\rm G6}$	224.089 9	223.183 9	223.245 8			
燃料成本/(\$ ・	h^{-1})	55 456.48	55 456.64	55 456.49			
污染排放量/(t・	h^{-1})	837.77	837.77	837.77			

表 8 6 单元发电机组最优燃料成本(P_{load}=1 000 MW) Tab. 8 Optimal fuel cost for 6-unit generator systems

4 000 3 4337

(**D**

	$(P_{\text{load}} = 1 \ 000 \ \text{MW})$						
参数名称		本文算法	FA ^[1]	BA ^[1]			
	$P_{\rm G1}$	41.388 5	41.1577	41.168 3			
	$P_{\rm G2}$	27.619 9	27.785 6	27.783 5			
发电机输出功率	P_{G3}	188.753 4	186.564 1	186.950 0			
/MW	$P_{\rm G4}$	170.813 1	170.579 7	170.578 7			
	P_{G5}	308.667 5	310.819 7	310.825 7			
	$P_{\rm G6}$	302.171 7	302.574 9	302.553 0			
燃料成本/(\$ ・	h^{-1})	52 361.54	52 361.25	52 361.12			
污染排放量/(t·	h^{-1})	1 021.41	1 022.48	1 022.46			

表 9 6 单元发电机组最优折衷解(P_{load} = 1 000 MW)

Tab. 9 Optimal compromise solutions for fuel cost and emission minimization for 6-unit generator systems $(P_{ini} = 1 \ 000 \ \text{MW})$

	•	(load	,
答い	十万秒	燃料成本/	污染排放量/
并伍石怀		$(\$ \cdot h^{-1})$	$(t \cdot h^{-1})$
	本文算法	51 073.954 0	810.993 4
	PSO ^[22]	51 269.600 0	828.863 0
未考虑线损	GOA ^[23]	51 833.810 0	834.790 0
	ALA-QPSO ^[24]	51 265.400 0	827.090 0
	EQPSO ^[24]	51 274.242 0	826.646 3
	本文算法	53 462.449 0	843.846 3
	FA ^[1]	54 124.280 0	851.530 0
考虑线损	BA ^[1]	54 124.120 0	851.530 0
	HYB ^[1]	54 124.130 0	851.530 0
	RRA ^[25]	54 121.101 0	851.194 2

由表9可知,在考虑线损和未考虑线损两种 情况,本文算法相对于其他算法的仿真数据均具 有较强的表现性。

图 3 为 6 单元发电机组在负荷需求为 1 000 MW 时,本文算法、PSO 算法和 GWO 算法的收敛曲线。

图 3 P_{load} = 1 000 MW 时的收敛曲线

Fig. 3 Convergence curves at $P_{\text{load}} = 1 000 \text{ MW}$

从图 3 可知,本文算法在收敛速度上比 PSO 算法与 GWO 算法快,且燃料成本更低。

电力系统负荷需求为 1 200 MW 时,分别以 最优污染排放量和最优燃料成本为优化目标,将 本文所提改进算法得到的仿真结果和其他文献的 应用的 DE^[12]、NGPSO^[12]算法的仿真结果进行对 比,结果如表 10 和表 11 所示,其中,"-"为参考 文献的仿真数据未给出。

表 10 6 单元发电机组最优污染排放量(P_{load} = 1 200 MW)

Tab. 10 Optimal emission for 6-unit generator systems $(P_{tot} = 1 \ 200 \text{ MW})$

		load		
参数名利	尔	本文算法	DE ^[12]	NGPSO ^[12]
	$P_{\rm G1}$	124.999 8	125.000 0	125.000 0
	P_{G2}	150.000 0	150.000 0	150.000 0
发电机输出功率	P_{G3}	200.827 8	201.181 6	210.268 4
/MW	$P_{\rm G4}$	199.179 8	199.545 4	199.368 9
	P_{G5}	289.513 1	287.619 1	287.971 2
	$P_{\rm G6}$	285.649 1	286.813 7	286.549 9
燃料成本/(\$	$\cdot h^{-1}$)	65 990.862 3	-	-
污染排放量/($(\mathbf{t} \cdot \mathbf{h}^{-1})$	1 240.671 7	1 240.700 0	1 240.700 0

表 11 6 单元发电机组最优燃料成本(P_{load}=1 200 MW)

Tab. 11 Optimal fuel cost for 6-unit generator systems (P = 1.200 MW)

(1 load - 1 200 MIV)				
参数名称		本文算法	DE ^[12]	NGPSO ^[1]
	P_{G1}	80.733 8	84.435 4	80.754 0
	P_{G2}	87.711 5	93.363 8	87.691 1
发电机输出功率	P_{G3}	210.000 0	225.000 0	210.000 0
/MW	$P_{\rm G4}$	225.000 0	209.999 5	225.000 0
	P_{G5}	325.000 0	325.000 0	325.000 0
	$P_{\rm G6}$	325.000 0	314.999 8	325.000 0
燃料成本/(\$	$\mathbf{\dot{s} \cdot h^{-1}}$	6 3975.844 7	64 083	63 975.778 8
污染排放量/($(\mathbf{t} \cdot \mathbf{h}^{-1})$	1 360.066 5	-	-

由表 10 可知,以燃料成本为优化目标时,本 文算法的燃料成本低于 DE 算法,与 NGPSO 算法 基本持平。由表 11 可知,以污染排放量为优化目

标时,本文算法的污染排放量比 DE 算法和 NGPSO 算法低。

表 12 为电力系统负荷需求为 1 200 MW,本 文所提算法与 NGPSO^[12]算法、多目标差分进化 (Multi-Objective Differential Evolution, MODE)算 法^[12]、ALA-QPSO 算法^[24]以及 EQPSO^[24]算法在 最优折衷解时的燃料成本和污染排放量的仿真结 果对比。

表 12 6 单元发电机组最优折衷解(P_{load} = 1 200 MW) Tab. 12 Optimal compromise solutions for fuel cost and emission minimization for 6-unit generator systems (P., = 1 200 MW)

	~J~~~~ load =	,
算法名称	燃料成本/(\$ •h⁻¹)	污染排放量/(t•h ⁻¹)
本文算法	65 636.680 4	1 213.628 1
NGPSO ^[12]	66 538.340 3	1 228.365 4
MODE ^[12]	64 843.000 0	1 286.000 0
ALA-QPSO ^[24]	65 095.100 0	1 276.180 0
EQPSO ^[24]	64 979.842 0	1 279.317 7

由表 12 可知本文算法的污染排放量低于其 他四种算法。

图4为6单元发电机组在负荷需求1200 MW时,本文算法、PSO算法和GWO算法的收敛 曲线。

图 4 P_{load} = 1 200 MW 时的收敛曲线

Fig. 4 Convergence curves at $P_{\text{load}} = 1\ 200\ \text{MW}$

由图 4 可知,本文算法在收敛速度上比 PSO 算法与 GWO 算法快,且燃料成本更低。

3.3 测试系统3

将本文算法应用于系统负载为 10 500 MW 的 40 单元发电机组的测试系统,考虑发电机组的 输出功率上下限。机组参数和其他输入数据可见 参考文献[1]。

分别以最优污染排放量和最优燃料成本为优 化目标,将本文所提改进算法得到的仿真结果和 其他文献的应用的 MBFA^[19]、NGPSO^[12]算法、 PSO^[5]算法以及 ISMA^[5]的仿真结果进行对比,结 果如表 13 和表 14 所示,其中,"-"为参考文献的 仿真数据未给出。

		本文算法	MBFA ^[19]	NGPSO ^[12]	PSO ^[5]	ISMA ^[5]
	P _{G1}	110.848 3	114.000 0	113.900 2	110.928	111.997 5
	P_{G2}	112.250 6	110.803 5	113.999 8	110.980	112.093 8
	P_{G3}	97.491 6	97.400 2	97.548 0	97.401	99.5133 3
	P_{G4}	179.732 9	179.733 3	179.751 9	179.733	180.249 7
	P_{G5}	92.421 3	87.807 2	95.637 8	87.948	90.3285 7
	$P_{\rm G6}$	139.999 4	140.000 0	139.999 9	140.000	139.999 5
	$P_{\rm G7}$	259.662 2	259.600 4	299.999 4	259.602	300.000 0
	$P_{\rm G8}$	284.617 4	284.600 6	286.690 3	284.600	288.640 1
	P_{G9}	284.653 2	130.000 0	285.163 8	284.600	286.200 0
发电机输出功率/MW	$P_{\rm G10}$	130.000 9	168.799 9	130.000 0	130.000	130.005 2
	P_{G11}	94.0051 4	168.799 8	94.000 0	168.800	168.797 7
	P_{G12}	168.802 3	214.759 8	168.809 8	243.600	94.121 46
	P_{G13}	214.743 6	304.519 5	125.000 5	214.760	125.000 1
	$P_{\rm G14}$	394.279 0	394.279 4	304.633 2	394 280	394.276 8
	P_{G15}	394.273 3	394.279 4	394.292 0	394.279	394.295 2
	P_{G16}	394.280 9	489.279 4	394.278 6	304.520	304.567 3
	P_{G17}	489.283 1	489.279 4	489.493 3	489.280	489.347 2
	$P_{\rm G18}$	489.292 4	511.279 5	489.319 1	489.280	489.275 9
	$P_{\rm G19}$	511.314 3	511.279 5	511.276 9	511.280	511.360 9

表 13 40 单元发电机组最优燃料成本 Tab. 13 Optimal fuel cost for 40-unit generator systems

						续表 13
参数名称		本文算法	MBFA ^[19]	NGPSO ^[12]	PSO ^[5]	ISMA ^[5]
	P_{G20}	511.295 4	523.279 4	511.288 8	511.280	511.323 0
	P_{G21}	523.300 8	523.279 4	523.458 8	523.280	523.327 1
	P_{G22}	523.314 0	523.279 6	523.495 7	523.280	523.354 6
	P_{G23}	523.289 5	523.279 5	523.302 7	523.280	523.457 6
	P_{G24}	523.277 1	523.279 6	523.320 3	523.279	523.289 3
	P_{G25}	523.302 9	523.279 4	523.395 3	523.279	523.565 1
	P_{G26}	523.315 2	523.279 5	523.305 8	523.280	523.351 8
	P_{G27}	10.000 0	10.000 1	10.022 9	10.000	10.000 55
	P_{G28}	10.000 0	10.000 2	10.016 1	10.000	10.000 08
	P_{G29}	10.000 2	10.000 2	10.000 0	10.001	10.000 0
发电机输出功率/MW	P_{G30}	90.362 7	89.507 0	97.000 0	88.008	96.999 46
	P_{G31}	189.999 1	190.000 0	189.992 0	190.000	189.999 0
	P_{G32}	189.999 9	190.000 0	189.9997	159.758	189.999 8
	P_{G33}	189.999 9	190.000 0	190.000 0	190.000	190.000 0
	P_{G34}	165.190 8	164.802 6	196.283 9	164.806	199.996 9
	P_{G35}	165.600 8	164.803 5	199.999 5	165.044	199.998 7
	P_{G36}	165.002 7	164.829 2	199.999 9	165.069	199.999 7
	P_{G37}	89.510 6	110.000 0	109.999 9	110.000	110.000 0
	P_{G38}	109.998 8	110.000 0	109.999 9	89.317	109.998 5
	P_{G39}	109.999 9	110.000 0	110.000 0	89.892	110.000 0
	$P_{\rm G40}$	511.285 8	511.279 5	511.315 0	511.280	511.277 8
燃料成本/(\$ ·h⁻	1)	121 410.563 0	121 415.653	121 513.48	121 627.99	121 546.89
污染排放量/(t·h	-1)	358 397.032 7	356 424.497	-	349 474.72	359 501.02

表 14 40 单元发电机组最优污染排放量

Tab. 14 Optimal emission for 40-unit generator systems

		本文算法	MBFA ^[19]	NGPSO ^[12]	PSO ^[5]	ISMA ^[5]
	P_{C1}	113.999 9	114.000 0	113.998 8	114.000	114.000
	P_{C2}^{G1}	113.999 9	114,000 0	114,000 0	114.000	114.000
	$P_{C_2}^{O_2}$	119,999 5	120,000 0	120.000 0	120.000	120.000
	P_{C4}^{03}	169.395 2	169 367 1	169.348 4	169.053	169.336
	P_{C5}^{04}	96.999 9	97.000 0	97.000 0	96.986	97.000
	$P_{C6}^{0.5}$	124.466 3	124.263 0	124,172 9	124.282	124.377
	P_{C7}^{00}	299.833 4	299,693 1	299.818 1	299.974	299 777
	$P_{C8}^{O_1}$	298.027 9	297.909 3	297.975 7	299.143	298.041
	P_{G9}^{00}	297.265 7	297.257 8	297.237 9	297.100	297.188
	P_{G10}	130.002 8	130.000 7	130.000 0	130.328	130.000
	P_{C11}^{010}	298.405 7	298.421 0	298.443 5	297.945	298.440
	P_{G12}^{011}	298.005 0	298.026 4	298.013 4	298.377	297.925
	P_{G13}	433.559 2	433.559 0	421.632 0	432.512	433.391
	P_{G14}^{013}	421.490 4	421.736 0	422.798 6	422.957	421 759
	P_{G15}	422.749 1	422.788 4	439.506 5	422.568	422.889
	P_{G16}	422.771 6	422.784 1	439.442 5	421.844	422.615
	$P_{G17}^{0.00}$	439.390 9	439.407 8	439.169 4	440.433	439.462
	P_{G18}	439.384 2	439.413 2	439.430 6	441.019	439.423
	P_{G19}	439.434 5	439.411 1	439.366 7	439.777	439.450
华市 相於山市茲 /MW	P_{G20}	439.364 3	439.415 5	439.366 7	439.324	439.396
反电机制击切举/MW	P_{G21}	439.451 08	439.442 1	439.378 3	440.824	439.632
	P_{G22}	439.439 80	439.458 7	439.878 3	438.398	439.268
	P_{G23}	439.751 7	439.782 2	439.823 2	439.397	439.607
	P_{G24}	439.752 3	139.769 7	439.878 3	440.782	439.916
	P_{G25}	440.111 8	440.119 1	440.196 6	439.729	440.099
	P_{G26}	440.164 4	440.121 9	440.236 5	438.262	440.204
	P_{G27}	28.994 8	28.973 8	29.058 3	29.192	29.026
	P_{G28}	28.970 5	29.000 7	29.095 6	28.060	28.816
	P_{G29}	29.001 0	28.982 8	28.943 8	29.153	28.993
	P_{G30}	96.999 9	97.000 0	97.000 0	96.998	97.000
	P_{G31}	172.320 3	172.334 8	172.244 0	172.006	172.244
	P_{G32}	172.313 5	172.332 7	172.311 9	171.379	172.327
	P_{G33}	172.339 2	172.326 2	172.368 1	172.551	172.358
	P_{G34}	199.999 9	200.000 0	200.000 0	200.000	200.000
	P_{G35}	199.999 9	200.000 0	200.000 0	199.997	200.000
	P_{G36}	199.999 9	200.000 0	200.000 0	199.994	200.000
	P_{G37}	100.841 7	100.844 1	100.820 7	100.552	100.950
	P_{G38}	100.780 9	100.834 6	100.901 8	101.000	100.868
	P_{G39}	100.822 8	100.836 2	100.822 9	100.316	100.884
	$P_{ m G40}$	439.397 0	439.386 8	439.389 5	439.787	439.337
燃料成本/(\$ ·h	-1)	129 951.31	129 995.00	-	129 937.64	129 948.69
污染排放量/(t·h	-1)	176 682.49	176 682.26	176 682.52	176 708.03	176 682.67

由表 13 可知,以最优燃料成本为优化目标 时,本文算法的燃料成本均优于其他算法。由 表 14 可知,以最优污染排放量为优化目标时,本 文算法的污染排放量低于 NGPSO 算法、ISMA 和 PSO 算法,略高于 MBFA,但本文算法的燃料 成本比 MBFA 更低。可见,本文算法具有较强 的竞争性。

表 15 为电力系统负荷需求为 10 500 MW 时, 本文所提算法与 NGPSO 算法^[12]、线性调制粒子 群 优 化 (Linearly Modulated Particle Swarm Optimization, LMPSO)算法^[26]、QPSO 算法^[21]以 及改进的形态滤波算法(Optimization Without Penalty-Based Optimization by Morphological Filter Algorithm, OWP-based OMF)^[27]在最优折衷解时 的燃料成本和污染排放量的仿真结果对比。

表 15 40 单元发电机组最优折衷解

Tab. 15Optimal compromise solutions for fuel cost and
emission minimization for 40-unit generator system

算法名称	燃料成本/(\$ ·h ⁻¹)	污染排放量/(t·h ⁻¹)
本文算法	127 371.151 9	184 112.127 8
NGPSO ^[12]	129 277.629 9	177 325.440 4
LMPSO ^[26]	124 668.236 5	219 048.644 0
QPSO ^[21]	129 544.546 7	176 886.720 8
OWP-based OMF $^{[27]}$	128 595.972 4	178 557.223 0

由表 15 可知,本文算法的污染排放量低于 LMPSO 算法,燃料成本低于 NGPSO 算法、QPSO 算法和 OWP-based OMF。

图 5 为 40 单元发电机组在负荷需求为 10 500 MW 时时,本文算法、PSO 算法和 GWO 算法的收敛曲线。

图 5 40 单元发电机组收敛曲线

Fig. 5 Convergence curves of 40-unit generator systems

由图 5 可知,本文算法在收敛速度上比 PSO 算法与 GWO 算法快,且燃料成本更低。

4 结语

本文提出了一种基于 GWO 的改进 PSO 算法 以求解环境经济调度问题。在初始种群引入折射 反向学习;在算法迭代时分别引入 GWO 算法与 混沌映射,从而更好平衡算法的全局搜索与局部 优化精细搜索,提高解的质量。将改进的 PSO 算 法应用到电力系统中 4 个实际案例中,与其他算 法进行对比,结果表明本文所提算法能更好地解 决复杂约束优化问题,在寻优精度和稳定性方面 有较强的表现性。

参考文献

- GHERBI Y A, BOUZEBOUDJA H, GHERBI F Z. The combined economic environmental dispatch using new hybrid metaheuristic [J]. Energy, 2016, 115: 468-477.
- [2] LIU J, ZHAO F, LI Y, et al. A new global sine cosine algorithm for solving economic emission dispatch problem [J]. Information Sciences, 2023, 648; 119569.
- [3] 帅茂杭,熊国江,胡晓,等.基于改进多目标骨干 粒子群算法的电力系统环境经济调度[J].控制 与决策,2022,37(4):997-1004.
 SHUAL M H, XIONG G J, HU X, et al. Economic emission dispatch of power system based on improved bare-bone multi-objective particle swarm optimization algorithm [J]. Control and Decision, 2022, 37(4): 997-1004.
- [4] 李斌,刘文胜,王介生,等.基于动态惩罚因子的 改进蚱蜢算法求解经济负荷调度和经济排放联合 调度问题[J].控制与决策,2022,37(7):1819-1826.

LI B, LIU W S, WANG J S, et al. Improved grasshopper optimization algorithm based on dynamic penalty factors to solve economic load dispatch and combined economic emission dispatch problem [J]. Control and Decision, 2022, 37(7): 1819-1826.

- [5] HASSAN M H, KAMEL S, ABUALIGAH L, et al. Development and application of slime mould algorithm for optimal economic emission dispatch [J]. Expert Systems with Applications, 2021, 182: 115205.
- [6] JEDDI B, VAHIDINASAB V. A modified harmony search method for environmental/economic load dispatch of real-world power systems [J]. Energy

107

Conversion and Management, 2014, 78: 661-675.

- [7] 王庆,李玉琛,蒙飞,等. 混沌正余弦算法在含风 能电力系统经济排放调度中的应用[J]. 电力系 统保护与控制, 2022, 50(24): 172-177.
 WANG Q, LI Y C, MENG F, et al. Application of an improved chaotic sine cosine algorithm in the economic emission scheduling of a power system with wind energy [J]. Power System Protection and Control, 2022, 50(24): 172-177.
- [8] LI L L, SHEN Q, TSENG M L, et al. Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm [J]. Journal of Cleaner Production, 2021, 316: 128318.
- [9] BOUARAKI M, DEKHANDJI F Z, RECIOUI A, et al. [J]. International Journal of System Assurance Engineering and Management, 2023.
- [10] 郭家豪, 欧阳晖, 刘振兴. 基于 APSO-SSVM 的异 步电动机转子故障诊断[J]. 电机与控制应用, 2023, 50(10): 91-99.

GUO J H, OUYANG H, LIU Z X. Rotor fault diagnosis of asynchronous motor based on APSO-SSVM [J]. Electric Machines & Control Application, 2023, 50(10): 91-99.

 [11] 张惠臻, 王刚, 夏立, 等. 海岛独立微电网多时间 尺度能量调度方法研究[J]. 电机与控制应用, 2018, 45(12): 113-120.

ZHANG H Z, WANG G, XIA L, et al. Multi-timescale energy management of island independent microgrid [J]. Electric Machines & Control Application, 2018, 45(12): 113-120.

- ZOU D, LI S, LI Z, et al. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses [J]. Energy Conversion and Management, 2017, 139: 45-70.
- [13] 刘刚,朱永利,蒋伟. 基于混合 DE-PSO 多目标算法的动态环境经济调度[J]. 电力自动化设备,2018,38(8):1-7.

LIU G, ZHU Y L, JIANG W. Dynamic economic emission dispatch based on hybrid DE-PSO multiobjective algorithm [J]. Electric Power Automation Equipment, 2018, 38(8): 1-7.

 [14] QIN Q, CHENG S, CHU X, et al. Solving nonconvex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization [J].
 Applied Soft Computing, 2017, 59: 229-242.

- [15] 梁静, 葛士磊, 瞿博阳, 等. 求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策, 2020, 35(8): 1813-1822.
 LIANG J, GE S L, QU B Y, et al. Improved particle swarm optimization algorithm for solving power system economic dispatch problem [J]. Control and Decision, 2020, 35(8): 1813-1822.
- [16] 邵鹏,吴志健,周炫余,等.基于折射原理反向学 习模型的改进粒子群算法[J].电子学报,2015, 43(11):2137.
 SHAO P, WU Z J, ZHOU X Y, et al. Improved particle swarm optimization algorithm based on opposite learning of refraction [J]. Acta Electronica

Sinica, 2015, 43(11): 2137.

- [17] 龙文,伍铁斌,唐明珠,等.基于透镜成像学习策略的灰狼优化算法[J].自动化学报,2020,46(10):2148-2164
 LONG W, WU T B, TANG M Z, et al. Grey wolf optimizer algorithm based on lens imagining learning strategy [J]. Acta Automatica Sinica, 2020, 46(10):2148-2164
- [18] SONG W, LIU S, WANG X, et al. An improved sparrow search algorithm [C]//2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Exeter, 2020.
- [19] HOTA P K, BARISAL A K, CHAKRABARTY R. Economic emission load dispatch through fuzzy based bacterial foraging algorithm [J]. International Journal Electrical Power and Energy Systems 2010, 32: 794-803.
- [20] RIZK-ALLAH R M, HAGAG E A, EL-FERGANY A
 A. Chaos-enhanced multi-objective tunicate swarm algorithm for economic-emission load dispatch problem [J]. Soft Computing, 2023, 27(9): 5721-5739.
- [21] BASETTI V, RANGARAJAN S S, SHIVA C K, et al. Economic emission load dispatch problem with valve-point loading using a novel quasi-oppositionalbased political optimizer [J]. Electronics, 2021, 10 (21): 2596.
- [22] BALAMURUGAN R, SUBRAMANIAN S. A simplified recursive approach to combined economic emission dispatch [J]. Electric Power Components and Systems, 2007, 36(1): 17-27.

刘虹伶,等:基于灰狼优化的改进粒子群算法求解环境经济调度问题

LIU Hongling, et al: Solving Environmental Economic Dispatch Problem Using an Improved Particle Swarm Optimization Algorithm Based on Grey Wolf Optimization

- [23] KARTHIKEYAN R. Combined economic emission dispatch using grasshopper optimization algorithm
 [J]. Materials Today: Proceedings, 2020, 33: 3378-3382.
- [24] ASIF M, AMIN A, JAMIL U, et al. Combined emission economic dispatch using quantum-inspired particle swarm optimization and its variants [J]. Energy Exploration & Exploitation, 2024, 42 (5): 1602-1644.
- [25] ASRAOUI A, BOUZEBOUDJA H, NAAMA B. A new runner root optimization algorithm for combined economic and emission dispatch considering valvepoint effect [J]. Przeglad Elektrotechniczny, 2023, 9: 159-163
- [26] JADOUN V K, GUPTA N, NIAZI K R, SWARNKAR A. Modulated particle swarm optimization for economic emission dispatch [J].

International Journal Electrical Power and Energy Systems, 2015, 73: 80-88.

[27] ZAOUI S, BELMADANI A. Solution of combined economic and emission dispatch problems of power systems without penalty [J]. Applied Artificial Intelligence, 2022, 36(1): 45-66.

收稿日期:2024-06-27

收到修改稿日期:2024-09-02

作者简介:

刘虹伶(1999-),女,硕士研究生,研究方向为电力系 统优化调度,liuhl3232@163.com;

*通信作者:时维国(1973-),男,博士,教授,研究方向 为智能电网优化调度和网络控制等研究,swgdl@163. com。

Solving Environmental Economic Dispatch Problem Using an Improved Particle Swarm Optimization Algorithm Based on Grey Wolf Optimization

LIU Hongling, SHI Weiguo*

(School Electrical Engineering, Dalian Jiaotong University, Dalian 116028, China)

Key words: particle swarm optimization; refracted opposition-based learning; grey wolf optimization; chaotic mapping; environmental economic dispatch

The economic dispatch problem plays a vital role in power systems, as it optimizes the output of thermal power plants to meet power system demands while minimizing fuel costs. Power plants use nonrenewable fossil fuels such as coal, oil, and natural gas for power generation, which produce gaseous pollutants like sulfur oxides, nitrogen oxides, and carbon dioxide, negatively impacting the environment. Therefore, reducing both operational costs and pollutant emissions in power systems has trend. become an inevitable Environmental economic dispatch is a nonlinear, strongly constrained, multi-objective optimization problem with multiple peaks.

The particle swarm optimization (PSO) algorithm demonstrates good performance and strong robustness in solving optimization problems; however, it has a tendency to fall into local optima. To address this issue, this paper proposed an improved PSO algorithm based on grey wolf optimization (GWO), enhancing the PSO algorithm in three areas: First, refracted opposition-based learning was introduced into the initial population to generate opposite solutions of optimal particles, expanding the potential search area and increasing diversity, which effectively improved the global optimization performance of PSO. Second, based on fitness values, the top three elite individuals in the particle swarm were selected as guides in the GWO search process to compensate for the PSO algorithm's limitation of tracking only the individual best and global best, thereby enhancing both local and global search capabilities. Third, in the later stages of the search, Tent chaotic mapping was used to perturb the optimal particles in the population, updating the positions of the individual and global optima based on fitness values.

This paper first established a mathematical model for environmental economic dispatch, aiming to optimize fuel cost and pollutant emissions, and used penalty factors to transform the bi-objective optimization problem into a single-objective problem. Subsequently, the PSO algorithm was improved from three perspectives. Finally, to verify the performance of the proposed algorithm, it was applied to 6-unit and 40-unit generator systems with different load demands, and the simulation results were compared with scheduling schemes obtained by other optimization methods. By comparing the convergence curves of the proposed algorithm with those of the PSO and GWO algorithms for 6-generator and 40generator power systems, the proposed improved algorithm converged more quickly to the optimal value and achieved the lowest fuel cost. Simulation results showed that the proposed algorithm effectively addressed complex constrained optimization problems, demonstrating strong performance in terms of optimization accuracy and stability.