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Abstract: [ Objective ] In practical engineering, some
asynchronous motors are not equipped with speed sensor and
torque measuring instrument, making it difficult to evaluate
the energy efficiency of motors, so it is of great significance to
study the identification method of speed and torque. This
paper proposes an on-line identification method of
asynchronous motor operation parameters based on measurable
voltage and current. The method has no limitation on voltage
and current waveforms, and does not need motor parameters
such as stator resistance and reactance, so it is widely
applicable and highly practical. [ Methods] Firstly, the
corresponding rotor slot harmonic frequency was found by fast
Fourier transform analysis of stator current, and then the rotor
speed was calculated. By constraining the rotor slot harmonic
frequency within a certain range through the slip rate, the
problem of tooth harmonic aliasing was resolved, enhancing
the accuracy of speed identification. Secondly, the stator
resistance was calculated by the motor nameplate parameters,
and the electromagnetic torque and output torque were
calculated by combining the collected voltage and current
data. Finally, to further enhance the applicability of the
proposed method, the fundamental wave compensation method
was introduced to globally scale the filtered signal, accurately
restoring the fundamental wave amplitude and further
improving identification accuracy. [Results] The direct start

and variable frequency drive models of asynchronous motor
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were built by Matlab to collect output data. Furthermore,
experiments were conducted on the Y100L1-4 asynchronous
motor to collect voltage and current experimental waveforms.
Simulation and experimental results demonstrated that the
identification errors for rotor speed and output torque
remained within 2% under various operating conditions,
thereby validating the feasibility and accuracy of the proposed
method. [Conclusion] The proposed method achieves on-line
identification of asynchronous motor operation parameters
based on measurable electrical quantities, providing a
significant  reference  for real-time identification  of
asynchronous motor operation parameters in practical
engineering applications.
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Tab.3 Simulation parameters for variable frequency

B4 STHEINEEEINETFERRHERE
Fig.4 Simulation waveform of stator current for

direct starting of asynchronous motor
drive of asynchronous motor
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Fig.7 Simulation flowchart for variable frequency

drive of asynchronous motor
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Fig.8 Three-phase square wave voltage for

variable frequency drive of asynchronous motor
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Fig. 9 Simulation waveforms of stator current for

variable frequency drive of asynchronous motor
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Fig. 11 Simulation waveform of torque for variable
frequency drive of asynchronous motor
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