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Abstract: [ Objective] Aiming to the problem of design

weighting factor in model predictive control, non-dominated
sorting genetic algorithm II ( NSGA-IT) and Bayesian
optimization algorithm are used to design weighting factors in
this paper. [Methods] Based on model predictive torque
control ( MPTC) for permanent magnet synchronous motor
(PMSM) , NSGA-II and Bayesian optimization algorithm were
used to design weighting factors in two scenarios, which were
without/with control ,

considering  switching  frequency

respectively. When without considering switching frequency
control, only one weighting factor needed to be designed,
when with considering switching frequency control, two

And based on the

weighting factors designed by two algorithms, a comparison of

weighting factors needed to be designed.

the two algorithms in terms of control performance, execution
[Results] The
results showed that both weighting factors design algorithms

PMSM MPTC

time and memory occupancy was carried out.

were feasible for system  with/without

considering switching frequency control. The weight factors
obtained by NSGA-II that minimize the fitness function value
were essentially equivalent to the optimal weight factors

derived from the Bayesian optimization algorithm, and control
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performances were basically equivalent. The control
performance of Bayesian optimization algorithm was relatively
superior. [Conclusion] NSGA-II can provide a set of Pareto
optimal solutions suitable for diverse application scenarios.
Characterized by high computational complexity, extended
processing times, and substantial memory requirements, it is
well-suited for dynamically evolving operational environments.
And the Bayesian optimization algorithm is easy to implement
and doesn’ t need too much resource, has better optimization
effect and higher optimization efficiency in complex scenarios
involving multiple control objectives.
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Tab.1 Parameters of PMSM used in simulation

SRR ZHUH
ETHHR/Q 0.2
YT RESE /Wb 0.175
d i L,/ H 0.008 5
q I L, /H 0.008 5
X% p 4
e J/ (kg + m*) 0.089
K e R B/ (N - m - s) 0.005
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Fig.2 Pareto optimal solutions without considering
switching frequency control
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Fig.3 Speed of PMSM (A, ¢, =211.29)
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Fig.4 Torque of PMSM( A, (, =211.29)
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Fig. 5 The amplitude of stator flux of PMSM
(A g =211.29)

DEf I 58, 5 58 S1 B AR Ik 3h i ik, 181G B ik 3
HROR J7 58 S2 WESE K S AR (B Wk shde ok T
% S0 A TP Z 1), Xof 7 g /)N 1) 7 B R 51
HF Pareto S ML & — 4G H FARI RN H 75
(IR T %8, AT AE Pareto fe DAL fife v 2 BURF X 17 )
P ZR A 2 SE BRI 37 5 i 2

© Editorial Office of Electric Machines & Control Application. This is an open access article under the CC BY-NC-ND 4. 0 license.



MR A5 IR ) A AT S0 P o 4 e A o R TR
50 LI Yaohua, et al; Study on the Design of Weighting Factor of Model Predictive Torque Control for PMSM

R 2 A[E Paetro s T A E B KR EHZH B
PMSM MPTC Z %188
Tab.2 Performance of PMSM MPTC system
without considering switching frequency control at

different Pareto optimal solutions
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Fig. 6 Pareto optimal solutions with considering switching
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Fig.9 Torque of PMSM (A, ¢, =194.48,A, , =0.048 2)

10 PMSM E FHIFENRIE (A, 5 =194.48,A, ,=0.048 2)
Fig. 10 The amplitude of stator flux of PMSM
(A, 59=194.48,A, ;,=0.048 2)
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Tab.3 Performance of the PMSM MPTC system
with considering switching frequency control

at different Pareto optimal solutions
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Fig. 11 Flowchart of Bayesian optimization algorithm
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Fig. 12 First iteration results of Bayesian
optimization algorithm without considering switching

frequency control
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Tab.4 Performance of the PMSM MPTC system
without considering switching frequency control at

Bayesian optimization

Te,RMSE/ lh,rmsn/ f;ne/

DEER S(x)
(N+m) Wb kHz
A =197 1.904 9 0.002 9 4.58 0.159 7
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Fig. 13 Speed of PMSM (A, =204.53)
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Fig. 14 Torque of PMSM (A, =204.53)
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Fig. 15 The amplitude of stator flux of PMSM
(A,=204.53)
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Fig. 16 First iteration results of the Bayesian optimization

algorithm with considering switching frequency control
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Tab.5 Performance of the PMSM MPTC system with
considering switching frequency control at

Bayesian optimization

Te,RMSE/ l//s,RMSE/ fme/

(N+m) Wb kHz
(A, Ay)=
2.036 6 0.003 4.37 0.292 0
(207, 0.029)
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H 2% 5 AT, 5 4 A5 B S AR &R
BT QYRR IK Bl T35 B0 8 03 N B ek R
PR TEE 40, 5 8 RmsE — sk A 2l
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Fig.17 Speed of PMSM (A, =200.3,
A,=0.042)

B 18 PMSM #46 (A, =200.3, A,=0.042)
Fig. 18 Torque of PMSM (A, =200.3,
A,=0.042)
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Fig. 19 The amplitude of stator flux of PMSM
(A;=200.3, 1,=0.042)
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