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Abstract:
 

 Objective  
 

The
 

initial
 

feature
 

of
 

single-phase
 

grounding
 

faults
 

in
 

distribution
 

networks
 

is
 

weak,
 

with
 

a
 

low
 

signal-to-noise
 

ratio.
 

Traditional
 

fault
 

detection
 

methods
 

suffer
 

from
 

low
 

detection
 

accuracy
 

and
 

insufficient
 

generalization
 

capability
 

when
 

labeled
 

data
 

samples
 

are
 

limited.
 

To
 

address
 

this
 

issue,
 

this
 

paper
 

proposes
 

a
 

TransTCN
 

semi-supervised
 

collaborative
 

learning
 

framework
 

that
 

integrates
 

Transformer
 

and
 

temporal
 

convolutional
 

network
 

( TCN ).
 

 Methods  
 

Firstly,
 

the
 

improved
 

complementary
 

ensemble
 

empirical
 

mode
 

decomposition
 

( ICEEMD )
 

method
 

was
 

employed
 

to
 

perform
 

adaptive
 

mode
 

decomposition
 

on
 

fault
 

zero-sequence
 

current
 

signal,
 

thereby
 

selecting
 

the
 

optimal
 

feature
 

components.
 

Secondly,
 

model
 

training
 

was
 

initialized
 

with
 

a
 

small
 

number
 

of
 

labelled
 

data
 

sample,
 

and
 

the
 

unlabeled
 

dataset
 

expanded
 

through
 

a
 

high-confidence
 

pseudo-label
 

generation
 

mechanism,
 

and
 

combined
 

with
 

a
 

loss
 

function
 

featuring
 

weight-adaptive
 

allocation
 

to
 

achieve
 

iterative
 

optimization
 

of
 

model
 

parameters.
 

Finally,
 

a
 

single-phase
 

grounding
 

fault
 

model
 

for
 

a
 

10
 

kV
 

distribution
 

network
 

was
 

constructed
 

using
 

PSCAD.
 

The
 

detection
 

performance
 

of
 

the
 

proposed
 

TransTCN
 

semi-supervised
 

model
 

was
 

validated
 

under
 

varying
 

grounding
 

resistances,
 

initial
 

fault
 

angles,
 

and
 

operational
 

conditions.
 

 Results  
 

Under
 

conditions
 

where
 

labeled
 

data
 

constituted
 

merely
 

15%
 

of
 

the
 

dataset,
 

the
 

proposed
 

TransTCN
 

semi-supervised
 

model
 

achieved
 

an
 

identification
 

accuracy
 

of
 

95. 31%
 

for
 

weak
 

feature
 

single-

phase
 

grounding
 

fault.
 

 Conclusion  
 

TransTCN
 

semi-
supervised

 

model
 

has
 

significant
 

advantages
 

in
 

weak
 

feature
 

extraction
 

and
 

few-sample
 

learning
 

scenarios.
 

It
 

performs
 

well
 

in
 

terms
 

of
 

fault
 

identification
 

accuracy,
 

convergence
 

stability,
 

and
 

cross-condition
 

generalization
 

ability,
 

and
 

has
 

certain
 

engineering
 

application
 

value.
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摘　 要:
 

【目的】配电网单相接地故障初期特征微弱、信
噪比较低,传统故障检测方法在标签数据样本有限时存

在检测精度低和泛化能力不足的问题。 为解决此问题,
本文设计了一种融合 Transformer 与时间卷积网络( TCN)
的 TransTCN 半监督协同学习框架。 【方法】首先,采用改

进互补集合经验模态分解( ICEEMD)方法对故障零序电

流信号进行自适应模态分解,筛选最优特征分量;然后,
通过少量标签数据样本初始化模型训练,并基于高置信

度伪标签生成机制扩充无标签数据集,结合权重自适应

分配的损失函数实现模型参数迭代优化;最后,基于

PSCAD 构建 10
 

kV 配电网单相接地故障模型,对所提

TransTCN 半监督模型在不同接地电阻、故障初始角及运

行工况下的检测性能进行了验证。 【结果】在有标签数据

比例仅为 15% 的条件下,所提 TransTCN 半监督模型对弱

特征单相接地故障的识别准确率高达 95.31% 。 【结论】
TransTCN 半监督模型在弱特征提取和小样本学习场景下

具有明显优势,在故障识别精度、收敛稳定性及跨工况泛

化能力等方面均表现良好,具备一定的工程应用价值。
关键词:

 

单相接地故障;Transformer;时间卷积网络;改进
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互补集合经验模态分解;弱特征

0　 引言

配电网的稳定运行是保障用户高质量用电的

核心基础,而快速发现并精准识别配电网中的故

障则是提升电网保护能力的关键[1-3] 。 在航天发

射场等对供电可靠性要求极高的关键场景中,实
时监测电网运行状态、精准识别配电网故障尤为

重要。 因此,针对配电网故障检测方法的研究具

有重要的工程意义。 目前,配电网中的故障可分

为大电流故障和弱特征故障两类。 大电流故障因

其电流幅值较大且特征明显,易于被现有保护系

统检测和处理[4-5] 。 相比之下,弱特征故障由于电

流变化微弱,难以被传统保护设备如电流保护器

或熔断器有效识别,可能导致保护动作延迟或失

效,从而可能引发严重的电力系统安全问题[6-8] 。
因此,探索一种能够高效识别和判断弱特征故障

的方法,对于保障配电网的安全运行和满足用户

高质量用电需求具有重要价值。
目前,针对配电网弱特征故障检测的方法主

要分为三类:基于解析模型的方法、基于信号分析

的方法和基于数据驱动的方法[9-10] 。
基于解析模型的方法通过对比系统测量参量

和系统动态模型参量间的残差区分弱特征故

障[11] 。 如文献[12]采用加权格兰杰因果关系来

分析系统扰动期间母线间因果关系,通过最优同

步相量测量判断智能电网中的弱特征故障,但该

方法模型复杂,难以应对实时性要求高的故障检

测。 文献[13]利用复杂事件处理技术建立数据

与信息间的逻辑关系实现故障诊断,但该方法逻

辑推理和判断过程对算法的要求较高,泛化能力

较差,难以大面积推广。
基于信号分析的方法主要通过对故障信号进

行快 速 傅 里 叶 变 换 ( Fast
 

Fourier
 

Transform,
 

FFT)、S 变换或经验模态分解 ( Empirical
 

Mode
 

Decomposition,
 

EMD)等时频域处理,提取故障的

时频特性,从而实现故障检测[14-19] 。 这些技术能

够有效分离并突出信号中的突变和瞬态特征,但
计算复杂度较高,难以满足电网对实时性的需求。

随着数据采集与监视控制系统在电网中的广

泛部署,基于数据驱动的方法逐渐成为研究热点。

该方法通过人工智能技术,基于历史数据进行故

障识别,无需预置阈值,泛化能力强[20] ,主要包括

无监督学习和有监督学习两类。 无监督学习方法

适用于标签数据不足的场景。 文献[21]利用深

度置信网络进行无监督学习,获得了较好的检测

效果。 文献[22]使用 K 近邻算法处理电流和电

压信号。 然而,无监督学习方法缺乏先验知识支

持,学习过程较为繁琐,且检测性能有限。 有监督

学习方法通过标签数据优化模型,通常能达到较

优的检测效果。 文献[23-24]采用多级支持向量

机(Support
 

Vector
 

Machine,
 

SVM)和遗传算法优

化 SVM 进行故障识别,但 SVM 作为单一分类器,
其学习能力存在局限性。 文献[25]结合粒子群

优化算法与贝叶斯分类器进行故障检测,但该方

法在处理高维数据时表现受限。 文献[26]利用

长短期记忆(Long
 

Short-Term
 

Memory,LSTM)网络

结合注意力机制进行故障检测,但易出现过拟合。
现有有监督学习方法通常依赖人工进行特征提

取,且模型复杂度较高。
为弥补现有方法的不足,本文提出了一种基

于 Transformer 与 时 间 卷 积 网 络 ( Temporal
 

Convolutional
 

Network,
 

TCN ) 协 同 训 练 的

TransTCN 半监督深度学习模型。 该模型通过

TCN 挖掘局部特征,结合 Transformer 获取全局特

征,两者协同优化以提高弱特征故障检测的精度。
在优化过程中,利用半监督学习方法生成伪标签

和正向反馈机制持续精进模型,提升对未标记数

据的辨识能力。 基于 PSCAD 平台构建了 10
 

kV
辐射配电网模型,模拟弱特征故障,采集零序电流

数据,采用改进互补集合经验模态分解( Improved
 

Complementary
 

Ensemble
 

EMD,
 

ICEEMD) 算法提

取特征。 最后,进行 TransTCN 半监督深度学习模

型的训练与验证。

1　 故障机理分析

一般中低压配电网线路故障中约 80% 为单

相接地故障[27] ,具体分为单相低阻接地故障和单

相高阻接地故障。
1. 1　 单相低阻接地故障

图 1 为单相低阻接地故障稳态示意图。 其

中,线路二 A 相发生单相低阻接地故障,线路一

为正常线路。 图 1 中,C01、C02 分别为线路一、线
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路二对地电容;İ01、İ02 分别为线路一、线路二零序

电流。 可见,在中性点不接地系统和中性点经消

弧线圈接地系统中,正常线路零序电流与故障线

路零序电流均相反。

图 1　 单相低阻接地故障稳态示意图

Fig. 1　 Single-phase
 

low-impedance
 

grounding
 

fault
 

steady-state
 

schematic
 

diagram

当系统发生故障时,暂态电容电流主要由放电

电容电流和充电电容电流两部分构成,前者由故障

相电压骤降产生,后者由故障相电压骤升产生。
中性点不接地系统发生单相低阻接地故障时

的暂态等效电路如图 2(a)所示。 由图 2(a)可得:

Umsin(ωt + θ) = L1

diC
dt

+ R1 iC + 1
C1

∫t

0
iCdt (1)

式中:R1、C1、L1 和 θ 分别为等效电路电阻、电容、
电感和初相角;Um 为零序电压幅值;iC 为 A 相故

障处容性电流。

图 2　 单相低阻接地故障暂态等效电路图

Fig. 2　 Single-phase
 

low-impedance
 

grounding
 

fault
 

transient
 

equivalent
 

circuit
 

diagram

中性点经消弧线圈接地系统发生单相低阻接

地故障时的暂态等效电路如图 2(b)所示。 图中,
R2、L2 和 C2 分别为等效电路电阻、电感和电容;
C0 为接地电阻;R tr 为过渡电阻;Lp 为消弧线圈

电感。

当 3R tr 较小(0. 01
 

Ω)时,由于暂态过程主要

由电容放电主导时,Lp 的响应时间远慢于暂态电

流变化,在分析暂态电容电流时可忽略 Lp 对等效

电路的影响[28] 。 当 3R tr 较大(100
 

Ω)时,由于受

电容充电速度低的影响,可忽略 R2 和 L2 对等效

电路的影响。 中性点经消弧线圈接地系统中单相

低阻接地故障暂态特性受电网初相角、分布参数、
消弧线圈容量及过渡电阻的影响。
1. 2　 单相高阻接地故障

单相高阻接地故障在中性点不接地系统和中

性点经消弧线圈接地系统中表现出相似的暂态特

性。 本文选择具有代表性的中性点经消弧线圈接

地系统来分析其暂态特性。 单相高阻接地故障暂

态等效电路及故障波形如图 3 所示。

图 3　 单相高阻接地故障暂态等效电路图和故障波形

Fig. 3　 Single-phase
 

high-impedance
 

grounding
 

fault
 

transient
 

equivalent
 

circuit
 

diagram
 

and
 

fault
 

waveforms

图 3(a)中,RHIF 为故障阻抗;C f 为故障点零

模分布电容; iHIF 为暂态零模电流; iRHIF
为流经

RHIF 的电流;iCf
为流经 C f 的电流。 图 3(b)中,电

压过零点处电弧电压维持较低状态,随着故障电

弧电离作用逐渐减弱,弧隙电阻处于峰值高阻状

态,此时电弧电流接近 0,随着电压逐渐升高,电
阻降低,电弧电流增大,电路出现“零休” 现象。
具体表现趋势为:随着电压变化,故障电弧电流呈

现平行于水平轴的畸变现象;故障阻抗出现周期

性尖峰阻抗。

2　 单相接地故障检测方法

2. 1　 ICEEMD
EMD 将信号分解为若干本征 模 态 函 数

(Intrinsic
 

Mode
 

Function,
 

IMF) [29] ,每个 IMF 分解

后可描述原始信号的动态特性。 假设故障信号
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S(k)由 k 组采集数据构成,利用 EMD 的基本原

理对 S(k)进行分解:

S(k) = ∑
j

i = 1
xi(k) + y j(k) (2)

式中:xi ( k) 为 S ( k) 从高到低分解后的第 i 个

IMF;y j(k)为分解后的残差信号,其保留了 S( k)
整体的平均趋势。

EMD 虽然能有效处理非线性非平稳信号,但
存在模态混叠现象和端点效应。

为避免出现模态混叠现象,集合经验模态分

解(Ensemble
 

EMD,
 

EEMD)在故障信号 S( k) 中

引入有限幅值白噪声 Zm( k),以获得含噪信号

Sm(k) [30] ,即:
Sm(k) = S(k) + Zm(k) (3)

　 　 利用 EMD 对 Sm(k)进行分解,得到 IMF。 再

重复上述步骤,即添加高斯白噪声并进行 EMD 分

解,得到一组新的 IMF,并对其 M 次试验进行集

合平均。 最后,通过 EEMD 分解得到最终信号的

IMF。 经 EEMD 处理后的第 i 个 IMF 分量 ci 为

ci =
1
M∑

M

m = 1
xm,i (4)

　 　 互补集合经验模态分解 ( Complementary
 

EEMD,
 

CEEMD)为 EEMD 的优化算法,将集中平

均数的数量从几百个数量级降低到几十个数

量级。 对于故障信号尤其是非平稳信号,CEEMD
原理是向原始信号 S(k)加入 u 组正、负相反的不

同量白噪声信号,对去噪后的信号进行 EMD 分

解,然后对分解后的 IMF 组取平均值。 最后对 k
组 IMF 取平均值,即为最终的 IMF 分量,即:

μi =
1

2M∑
M

m = 1
(x +

i,m + x -
i,m) (5)

式中:x+
i,m 和 x-

i,m 分别为对 S+
m( k) 和 S-

m( k) 应用

EEMD 得到的信号;μi 为经 CEEMD 处理得到的

第 i 个 IMF 分量。
CEEMD 分解过程中产生的 IMF 分量个数存

在较大差异,若考虑所有分量则会导致训练时间

急剧增加;若随机选取 IMF 分量,试验结果缺乏

严谨性。 自适应策略可有效地平衡收敛性和均匀

性,获得更好的优化性能和鲁棒性[31] 。 为此,本
文提出基于自适应策略的 ICEEMD,通过皮尔逊

相关系数 rho( ·)自适应选取 CEEMD 分解后的

IMF 分量,即:

rho[μi,S(k)] =
Cov[μi,S(k)]

var(μi)·var[S(k)]
(6)

式中:Cov[ μi,
 

S ( k)] 为 μi 和 S ( k) 的协方差;
var(μi)、var[S(k)]分别为 μi、S(k)的方差。

经过 ICEEMD 处理后的某故障电流信号时频

变换图如图 4 所示。 图 4 仅列举了 IMF1 信号图。

图 4　 经过 ICEEMD 处理后的故障电流信号

时频变换图

Fig. 4　 Time
 

frequency
 

transformation
 

diagrams
 

of
 

fault
 

current
 

signal
 

processed
 

by
 

ICEEMD

由图 4 可知,ICEEMD 分解后得到的 IMF 分

量具有较好的时频聚集特性,重构信号噪声水平

较低,表现出良好的分解效果。
2. 2　 半监督故障检测模型

为提升模型的泛化能力和故障检测性能,本
文基于协同训练理念设计了一种半监督学习模型

框架,如图 5 所示。 该框架通过持续迭代给无标

签数据分配伪标签,并将伪标签作为真实标签重

新加入训练集,从而扩展样本数据集。 该框架结

合 TCN 和 Transformer 两个互补的分类器网络进

行协同训练。 其中,TCN 模型擅长捕获序列数据

的局部特征,可通过卷积有效捕捉局部异常模式,
TCN 的并行计算特性使其在迭代训练时更高效,
适合 半 监 督 学 习 的 大 规 模 数 据 场 景; 而

Transformer 模型更擅长全局建模,从全局视角出

09

邱桂华,等:基于 TransTCN 半监督模型的配电网单相接地故障检测方法研究

QIU
 

Guihua,
 

et
 

al:
 

Research
 

on
 

Single-Phase
 

Grounding
 

Fault
 

Detection
 

Method
 

in
 

Distribution
 

Network
 

Based
 

on
 

TransTCN
 

Semi-Supervised
 

Model

􀅹 Editorial
 

Office
 

of
 

Electric
 

Machines
 

&
 

Control
 

Application.
 

This
 

is
 

an
 

open
 

access
 

article
 

under
 

the
 

CC
 

BY-NC-ND
 

4. 0
 

license.



发,聚焦于序列数据的整体特征。
设第 i 个数据的输入特征为 xi,可得:

pc
i = fc

η(xi)

pt
i = ft

η(xi)
{ (7)

式中:pc
i 、pt

i 和 fc
η( ·)、 ft

η( ·) 分别为 TCN 模型、
Transformer 模型的预测结果和表达式。

基于 式 ( 7 ) 的 预 测 结 果, 通 过 TCN 和

Transformer 协同训练所生成的伪标签 qlc
l 、qlt

l 为

qlc
l = arg

 

max(pc
i )

qlt
l = arg

 

max(pt
i)

{ (8)

式中:arg
 

max(·)为预测结果中概率值最大对应

的标签。
获取伪标签后,采用交叉熵损失函数计算无

标签数据的协同训练损失,以此优化模型,如式

(9)所示:
Lctl = Lce(pc

i ,qlc
i ) + Lce(pt

i,qlt
i) (9)

式中:Lctl 为协同训练无标签数据获得的总损失;

Lce(·)交叉熵损失函数。
有标签数据通过协同训练框架学习,利用交

叉熵损失函数得到 TCN 模型和 Transformer 模型

的有监督总损失 Lsup:
Lsup = Lce(pc

i ,yi) + Lce(pt
i,yi) (10)

式中:yi 为第 i 个输入数据对应的真实类别标签。
为进一步优化协同训练模型,计算总训练损

失 Ltotal。 本文采用动态加权系数 λ(n)调节协同

Lctl 及 Lsup,如式(11)所示:
Ltotal = Lsup + λ(n)Lctl

λ(n) = λmaxe
-5 1-

ni
ntotal

( ) 2

ì

î

í
ïï

ïï
(11)

式中:ni 为当前训练迭代次数;ntotal 为训练所需总

迭代次数;λmax 为加权系数最大值。
λmax 取值通常在 0.05 ~ 0.2 之间[32] ,λmax 过大

易放大伪标签误差,过小则会削弱无标签样本学

习能力,因此本文综合考虑选择 λmax = 0.1。

图 5　 半监督学习模型框架

Fig. 5　 Semi-supervised
 

learning
 

model
 

framework

2. 3　 检测模型构建

2. 3. 1　 Transformer 模型构建

Transformer 模型架构如图 6 所示。 序列嵌入

模块主要将输入数据嵌入到高维空间,通过线性

向量映射到所选定的编码维度,同时通过添加位

置编码将输入数据贴上唯一的位置标识符,该模

块使得模型能更全面地学习数据序列的中长距离

依赖关系。
特征提取模块由 L 层 Transformer 模块组成,

通过探究各编码段向量间的关联信息,提取故障

电流数据序列中的全局特征,具体为

I′ = fLN[I + fmultihead(I)]
fblock(I) = fLN[I′ + fMLP(I′)]{ (12)

式中: fLN ( · ) 为正则化层操作; fblock ( · ) 为
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Transform 模型的输出;fmultihead( ·)为多头注意力

函数;I 为输入向量;fMLP(·)为多层感知机函数。
分类器由两个线性层组成,并采用 softmax 激

活函数得到每种故障类型的概率输出,概率最大

的类型即为模型预测的故障类型。

图 6　 Transformer 模型架构

Fig. 6　 Transformer
 

model
 

architecture

2. 3. 2　 TCN 模型构建

TCN 模型由 Bai 等人提出[33] ,是一种专门为

序列建模和时间序列处理设计的卷积神经网络架

构,如图 7 所示。 TCN 模型结合了因果卷积和空

洞卷积的特性,旨在高效捕捉时间序列中的长期

依赖关系,同时避免传统循环神经网络的梯度消

失或计算效率低的问题。

图 7　 TCN 模型架构

Fig. 7　 TCN
 

model
 

architecture

扩张因果卷积运算可表示为

F(xt) = (x × f)xt = ∑
k-1

i = 0
fi·x( t -d)·t (13)

式中: x∈ RT×C,T 为序列长度,C 为特征维度;
F(xt)为模型神经元输出;xt 为时间序列; f 为筛

选器;k 为卷积核大小;d 为扩张因子。
为缓解深层网络的梯度消失问题,TCN 模型

通常采用多个残差块连接,输入数据经扩张因果

卷积层、归一化层、ReLU 激活函数及 Dropout 层

后,被送至下一残差块,每个残差块的输出通过堆

叠逐步扩大感受野,最终覆盖整个序列。 同时,将
输入通过一维 3×3 卷积提取局部信息,并将提取

的信息直接加到 3 个残差块后再经过多层全连接

层输出。 TCN 的并行计算特性使其在迭代训练时

更高效,更适合半监督学习的大规模数据场景。
本文所用 TCN 模型参数如表 1 所示。 该模

型主要由 3 个残差块、3 层全连接层分类器构成。
该结构均采用小卷积核组合,可极大减少网络中

的参数,进而提高模型的泛化能力。
表 1　 TCN 模型参数

Tab. 1　 TCN
 

model
 

parameters

参数名称 参数值

卷积核大小 3×3

扩张因子 [1,
 

2,
 

4,
 

8]

卷积通道数 64

Dropout 0.2

学习率 1e-5

优化器 Adam

3　 试验与分析

为验证本文提方法的有效性与精确性,所有

试验均在一台配备 i7-8750HQ 处理器、16
 

GB 内

存和 NVIDIA
 

GeForce
 

GTX
 

1060Ti 显卡的计算机

上进行,使用 PyTorch 深度学习框架构建半监督

弱特征故障检测模型。 并基于 PSCAD 平台建立

10
 

kV 辐射型配电网模型,如图 8 所示。
图 8 所示的电力系统高压侧采用 220

 

kV 电

压,通过单母线分段结构连接两台 220
 

kV / 10
 

kV
的变压器,从而构建 10

 

kV 交流配电系统。 在母

线 5 与母线 10 处配置电容器进行无功功率补偿,
以维持线路末端压降不超过 3% 的标准。 该配电

系统有 2 条 10
 

kV 出线、14 个负荷节点,并通过控

制开关 S 调整系统中性点接地方式。 设置采样频

率为 20
 

kHz;故障类型为单相低阻接地和单相高

阻接地(均为 A 相故障,分别在 15% 、55% 和 90%
处各设置 3 组不同的故障参数值);故障点 16 处,
每隔 15°设置 1 个不同的故障初相角( 5°、20°、
35°、50°、65°、80°、95°、110°、125°、140°、155° 和
170°)。 通过多维参数配置构建零序电流样本集,
其中包含 1

 

152 组故障工况数据。 为真实反映电
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图 8　 10
 

kV 配电网拓扑结构示意图

Fig. 8　 Schematic
 

diagram
 

of
 

the
 

10
 

kV
 

distribution
 

network
 

topology

网运行特性,同步采集了 4
 

608 组正常工况下的

零序电流样本,共形成原始数据集 1
 

152+4
 

608
 

=
 

5
 

760 组。 为确保模型训练的有效性与评估可靠

性,将原始数据集按 6 ∶2 ∶2的比例分为训练集、验
证集和测试集。
3. 1　 评价指标构建

将故障按真实标签与预测标签分为真阳性

(True
 

Positive,
 

TP)、假阳性(False
 

Positive,
 

FP)、
真阴 性 ( True

 

Negative,
 

TN ) 与 假 阴 性 ( False
 

Negative,
 

FN)四种类别。 故障检测本质上是分类

任务,用表 2 所示的混淆矩阵的分类结果与实际

值进行比较,从而直观地表示各类别的分类状态。
表 2　 故障检测中的混淆矩阵

Tab. 2　 Confusion
 

matrix
 

in
 

fault
 

detection

类别 预测为正类别 预测为负类别

实际为正类别 TP FN

实际为负类别 FP TN

　 　 构建评价指标,包括准确率(Accuracy,
 

ACC)
和 F1 分数 ( F1-Score,

 

F1),如式 ( 14)、式 ( 15)
所示:

ACC = TP + TN
TP + TN + FP + FN

(14)

F1 = 2[TP / (TP + FP)]·Recall
[TP / (TP + FP)] + Recall

(15)

式中:Recall 为召回率。
此外,受试者工作特征 ( Receiver

 

Operating
 

Characteristic,
 

ROC) 曲线描述了真阳性率( True
 

Positive
 

Rate,
 

TPR) 和假阳性率 ( False
 

Positive
 

Rate,
 

FPR)变化时的相对关系,适合在数据集不

平衡时评估分类器的整体性能,ROC 曲线下面积

( Area
 

Under
 

the
 

Curve,
 

AUC) 越大, 模型性能

越好。
3. 2　 故障电流信号处理

采用 ICEEMD 对故障零序电流信号进行特征

提取,获得 IMF1 ~ IMF5 五个 IMF 分量,结果如图

9 所示。 对于配电网故障检测,一般采用 IMF1 和

IMF2 作为检测用尺度[34] 。 IMF1 分量保留了原

始信号的绝大部分分量,IMF2 ~ IMF5 受谐波分量

影响,并不能体现原始故障信号的主要特征。 因

此,本文选择 IMF1 作为检测用尺度。

图 9　 ICEEMD 信号处理结果

Fig. 9　 ICEEMD
 

signal
 

processing
 

results

3. 3　 模型超参数分析

在 TCN 和 Transformer 组成的半监督模型中,
TCN 卷积核大小 k、扩张因子 d 和 Transformer 个

数 L、多头注意力头数 h 共同影响半监督模型的

复杂度和检测精度。 半监督模型中各超参数值越

大,模型检测性能越强,但模型复杂度也快速提

升,存在过拟合风险。 为平衡模型复杂度和检测

效果,应选择合适的模型超参数。 本文半监督模

型超参数设置范围及最优值如表 3 所示。
采用最佳配置的超参数对半监督模型进行迭

代训练,图 10 展示了该模型在不同训练周期下的
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ACC 与损失函数演变过程。 学习曲线显示以下

特征:(1)收敛轨迹平滑无明显振荡,表明学习过

程稳定可控;(2)训练集与验证集的 ACC 及损失

值同步收敛,其偏差范围始终低于预设阈值。 这

些特征表明模型在参数空间探索中实现了理想的

泛化能力平衡,有效规避了欠拟合与过拟合的潜

在问题。
表 3　 半监督模型超参数设置

Tab. 3　 Hyperparameter
 

setting
 

for
 

semi-
supervised

 

model

超参数名称 设置范围 最优值

L 2、3、4、5、6 6

h 4、6、8、16 8

d [1,2,4]、[1,2,4,8]、[1,2,3,6] [1,2,4,8]

k 3×3、5×5、7×7 3×3

图 10　 不同训练周期的 ACC 与模型损失

Fig. 10　 ACC
 

and
 

model
 

loss
 

for
 

different
 

training
 

epochs

3. 4　 半监督模型试验与分析

为评估半监督模型的性能,本文采用 15% 、
25% 、35% 、45% 、65% 和 85% 的有标签数据,其余

部分作为无标签数据,并通过测试集检验不同标

签比例下的检测效果。 为建立性能基准,同步实

施全监督对照试验(标注率 100% )。 半监督模型

(1#)与全监督模型(2# ) 在不同标签数据比例下

的性能指标如表 4 所示。
由表 4 可知,随着有标签数据比例的增加,全

监督模型的各项性能指标持续提升,其中 AUC 从

90.13% 上升到 99. 12% , FPR 从 9. 67% 下降至

1.14% ,表明标签数据量的增多显著增强了有监

督学习的整体性能。 对于半监督模型,当有标签

数据比例从 15% 增至 45% 时,性能指标逐步改

善,AUC 从 96.04% 提升至 98.97% ,FPR 从 5.66%
降至 1.38% ;但当有标签数据比例进一步提高至

65% 及以上时,各项指标仍有小幅提升,但增幅明

显减小,呈现出性能提升逐渐趋缓的趋势。 这表

明,当有标签数据占比达到 45% 时,基于 TCN 与

Transformer 网络协同训练的半监督学习模型已有

效挖掘了无标签数据分布特征蕴含的信息,此时

模型的检测性能已接近全监督学习模型的水平。
表 4　 不同标签数据比例下两种模型性能指标对比

Tab. 4　 Comparison
 

of
 

performance
 

indicators
 

for
 

two
 

models
 

under
 

different
 

labelled
 

data
 

ratios

比例 / % 模型
性能指标 / %

AUC ACC FPR TPR F1

15
1# 96.04 91.13 5.66 91.56 80.25

2# 90.13 87.58 9.67 89.63 80.17

25
1# 97.03 92.09 3.11 91.61 84.46

2# 91.02 88.32 8.63 89.99 82.68

35
1# 98.21 93.63 2.86 90.13 85.67

2# 92.28 90.26 6.46 90.01 84.33

45
1# 98.97 95.53 1.38 89.93 88.04

2# 94.37 91.22 5.51 89.56 85.87

65
1# 99.23 96.07 1.27 89.78 89.01

2# 96.25 93.22 3.35 90.09 88.48

85
1# 99.23 96.15 1.22 90.21 90.03

2# 99.12 96.13 1.14 90.11 90.15

　 　 当有标签数据比例超过 65% 时,半监督模型

的性能提升幅度逐渐减小,并在 85% 附近与全监

督模型表现趋于接近。 而当有标签数据比例低于

65% 时,半监督模型展现出较大优势,尤其在标签

数据少于 25% 时优势尤为突出。 例如,当标签数

据比例为 15% 时, 半监督模型的 AUC 达 到

96.04% ,比全监督模型高 5. 91% ,而 FPR 仅为

5.66% ,远低于全监督模型的 9.67% 。
综上可见,本文所提半监督模型具备优异的检

测性能和泛化能力,特别是在有标签数据较少的情

况下,其优势尤为显著。 图 11 展示了两种模型在

不同标签数据比例下的 AUC 与 FPR 对比结果。
为验证所提半监督模型在检测单相低阻接地

和单相高阻接地故障时的有效性,在有标签数据

占比为 40% 的情况下,使用图 12 所示的混淆矩阵

来可视化其验证效果。 图 12 中,标签“0”为正常
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图 11　 不同标签数据比例下两种模型的 AUC 和 FPR
Fig. 11　 AUC

 

and
 

FPR
 

of
 

the
 

two
 

models
 

under
 

different
 

labelled
 

data
 

proportions

状态;标签“1”为单相低阻接地故障;标签“2”为

单相高阻接地故障。

图 12　 两种故障检测混淆矩阵

Fig. 12　 Confusion
 

matrix
 

of
 

two
 

kinds
 

of
 

fault
 

detection

由图 12 可知,半监督模型对正常状态、单相

低阻接地故障和单相高阻接地故障的识别准确率

分别达到 97.8% 、94% 和 96.2% ,均表现出较高的

精度。
3. 5　 与现有方法的比较与分析

本文使用 Adam 优化器更新模型权重,以最

小化损失函数。 图 13( a) 展示了随训练周期增

加,有标签数据损失和无标签数据损失的变化情

况。 可见,无标签数据损失和有标签数据损失均

随着训练周期的增加逐渐下降并趋于稳定,最终

达到收敛。
图 13(b)展示了动态加权系数 λ(n)对协同

训练中无标签数据损失权重的调节过程。 随着训

练周期的增多,λ 从 0 逐步增加至 0.1,半监督模

型初期主要聚焦于有标签数据的训练,随后逐渐

加强对无标签数据的学习。 这种训练策略有效避

免了因学习无标签数据的错误伪标签而导致训练

过程剧烈波动或模型无法收敛的问题。 通过一定

周期的有标签数据训练,可大幅降低无标签数据

被错误标记为伪标签的风险,从而更好地挖掘无

标签数据的分布特征信息,提升模型的泛化能力

和检测性能。

图 13　 半监督模型损失变化曲线

Fig. 13　 Loss
 

change
 

curve
 

of
 

semi-supervised
 

model

半监督模型中 Transformer 模型与 TCN 模型

的训练集和验证集 ACC 变化曲线如图 14 所示。
由图 14 可知,训练集上 Transformer 模型和

TCN 模型的 ACC 随训练周期的增加逐步稳定,且
均超过 90% ;验证集上两模型的 ACC 的变化趋势

与训练集相似,但曲线波动幅度更大,这是因为验

证集上的无标签数据被错误标记,导致梯度更新

方向偏误,ACC 曲线波动较大,但随着协同训练

的正反馈机制逐步发挥作用,波动逐渐减小,最终

曲线趋于收敛。 可见,在协同训练框架下,两模型

通过相互正反馈,为无标签数据分配正确标签,并
引导对方模型的训练,从而提升整体性能。

为了评估所提 TransTCN 协同训练半监督模

型的有效性,通过消融试验进行验证。 在 15% 有

标签数据比例下, TransTCN 半监督学习模型、
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图 14　 训练集和验证集 ACC 变化曲线

Fig. 14　 ACC
 

change
 

curves
 

of
 

training
 

set
 

and
 

validation
 

set

Transformer 半监督学习模型以及 TCN 半监督学

习模型的检测性能对比如表 5 所示。
表 5　 不同模型的检测性能对比

Tab. 5　 Comparison
 

of
 

detection
 

performance
 

across
 

different
 

models

模型名称
性能指标 / %

AUC ACC FPR TPR F1

TransTCN 96.04 91.13 5.66 91.56 80.25

Transformer 95.02 88.34 6.51 82.32 77.85

TCN 91.82 86.34 9.76 80.22 71.63

　 　 由表 5 可知,TransTCN 半监督模型在各项指

标上均优于 Transformer 和 TCN 半监督模型,性能

整体提升约 1% ~ 10% ,FPR 降低约 1% ~ 5% 。 同

时,Transformer 半监督模型的表现优于 TCN 半监

督模型,可见 Transformer 模型在故障检测任务中

更具适用性。
为了更深入地评估 TransTCN 半监督模型的

性 能, 将 其 与 图 方 法 ( Graph-based
 

Method,
 

GM) [35] 、变分自编码器( Variational
 

Autoencoder,
 

VAE) [36] 、 半监督支持向量机 ( Semi-supervised
 

SVM,
 

S3VM) [37] 、 半监督生成对抗网络 ( Semi-
supervised

 

Generative
 

Adversarial
 

Network,
 

SGAN ) [38] 和 一 致 性 正 则 化 ( Consistency
 

Regularization,
 

CR) [39]等五种现有半监督算法进

行对比分析。 各算法主要参数设置如表 6 所示。
表 6　 各算法主要参数设置

Tab. 6　 Main
 

parameters
 

setting
 

of
 

each
 

algorithm

算法名称 参数设置

GM k 近邻数为 10,传播系数为 0.8,学习率为 0.001

VAE 隐变量维度为 10,学习率为 0.000
 

1,KL 散度权重为 1

S3VM
惩罚参数为 0.1,核函数为径向基函数,

最大迭代次数为 100

SGAN 学习率为 0.000
 

1,平衡系数为 0.1,优化器为 Adam

CR 置信度阈值为 0.95,一致性损失权重为 1.0

　 　 在 15% 有标签数据比例下,不同算法的检测

性能指标对比如表 7 所示。 可见, 本文所提

TransTCN 模型的检测性能指标均优于其他算法。
其余四种算法的整体性能排名为: CR > SGAN >
S3VM>VAE>GM。

表 7　 不同算法的检测性能指标对比

Tab. 7　 Detection
 

performance
 

indicators
 

by
 

different
 

algorithms

算法名称
性能指标 / 100%

ACC TPR FPR F1

GM 86.32 76.53 8.56 70.79

VAE 87.69 77.86 9.67 73.13

S3VM 89.21 78.34 8.42 74.68

SGAN 88.67 83.91 7.23 77.72

CR 90.68 89.56 6.33 87.31

TransTCN 95.31 97.33 5.12 90.13

　 　 为全面评估及量化所提 TransTCN 半监督模

型检测方法的性能,设置训练集、测试集及验证集

比例为 6 ∶ 2 ∶ 2,采用 ROC 曲线的 AUC 对 CR、
SGAN、S3VM、VAE、GM 与 TransTCN 模型的检测

性能进行量化,结果如图 15 所示。
理想的 ROC 曲线应尽量贴近左上角,表明检

测性能更优。 由图 15 可知,本文所提 TransTCN
半监督模型的 ROC 曲线更接近左上角,其 AUC
最高,检测效果优于其他方法。
3. 6　 灵敏度分析

为了全面验证 TransTCN 半监督模型在不同
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图 15　 各算法的 ROC 曲线

Fig. 15　 ROC
 

curves
 

for
 

each
 

algorithm

数据规模下的性能稳定性、鲁棒性和泛化能力,以
数据集大小作为关键参数,通过灵敏度分析来评

估模型的稳定性。 分别选取数据集的 5% 、15% 、
25% 、35% 、 45% 、 55% 、 65% 、 75% 、 85% 、 95% 及

100% 作为试验参数,对模型进行十次重复训练,
并以性能均值和标准差作为最终结果。 试验结果

如图 16 所示,采用 FPR 和 TPR 两个指标来评估

模型在不同数据集比例下的表现。

图 16　 数据集比例对模型性能影响

Fig. 16　 Impact
 

of
 

dataset
 

proportions
 

on
 

model
 

performance

由图 16 可知,当数据集比例低于 65% 时,随
数据集比例的升高,FPR 逐渐降低,TPR 逐渐升

高,伴随轻微波动;当比例高于 65% 时, FPR 和

TPR 趋于稳定,不随数据比例增加而显著变化。
结果表明,在数据量较小时,模型的分类精度随样

本量增加而不断提高;当数据量达到一定规模后,
分类精度维持在较高水平且保持稳定。 可见

TransTCN 半监督模型对数据的依赖性较低,特别

适合数据获取困难、成本较高的故障检测应用

场景。

4　 结语

本文构建了一种结合 Transformer 全局建模

能力与 TCN 局部特征提取优势的 TransTCN 半监

督协同训练模型,用于配电网弱特征故障检测。
其核心策略是利用少量有标签样本引导模型学

习,从而为大量无标签数据生成高质量的伪标签

进行扩充训练,并通过设计加权损失函数实现模

型参数的迭代优化与性能提升。 采用 ICEEMD 对

PSCAD 平台生成的 10
 

kV 辐射型配电网故障信

号进行预处理后,在 15% 有标签数据比例下,模
型对弱特征故障的识别准确率高达 95.31% 。 性

能评估结果表明,TransTCN 半监督模型具有强大

的局部和全局特征提取能力,泛化能力优异,显著

降低了过拟合风险。 其检测精度、鲁棒性及泛化

能力均超越现有半监督深度学习方法。 所提

TransTCN 半监督模型为智能电网弱特征故障的

早期精准检测提供了高效解决方案,为提升电网

运行可靠性和用户用电质量提供了关键技术

支撑。
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