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Abstract: [ Objective] The initial feature of single-phase
grounding faults in distribution networks is weak, with a low
signal-to-noise ratio. Traditional fault detection methods suffer
from low detection accuracy and insufficient generalization
capability when labeled data samples are limited. To address
this issue, this paper proposes a TransTCN semi-supervised
collaborative learning framework that integrates Transformer
and temporal convolutional network ( TCN). [ Methods ]
Firstly, the improved complementary ensemble empirical
mode decomposition ( ICEEMD ) method was employed to
perform adaptive mode decomposition on fault zero-sequence
current signal, thereby selecting the optimal feature
components. Secondly, model training was initialized with a
small number of labelled data sample, and the unlabeled
dataset expanded through a high-confidence pseudo-label
generation mechanism, and combined with a loss function
featuring weight-adaptive allocation to achieve iterative
optimization of model parameters. Finally, a single-phase
grounding fault model for a 10 kV distribution network was
constructed using PSCAD. The detection performance of the
proposed TransTCN semi-supervised model was validated
under varying grounding resistances, initial fault angles, and
operational conditions. [Results] Under conditions where
labeled data constituted merely 15% of the dataset, the
proposed TransTCN semi-supervised model achieved an

identification accuracy of 95.31% for weak feature single-
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phase grounding fault. [ Conclusion ] TransTCN semi-
supervised model has significant advantages in weak feature
extraction and few-sample learning scenarios. It performs well
in terms of fault identification accuracy, convergence
stability, and cross-condition generalization ability, and has
certain engineering application value.

Key words: single-phase grounding fault; Transformer;
temporal convolutional network; improved complementary

ensemble empirical mode decomposition; weak feature
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Fig.1 Single-phase low-impedance grounding

fault steady-state schematic diagram
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Fig.2 Single-phase low-impedance grounding

fault transient equivalent circuit diagram
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Fig.3 Single-phase high-impedance grounding fault
transient equivalent circuit diagram and fault waveforms
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Fig.4 Time frequency transformation diagrams of

fault current signal processed by ICEEMD
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Fig.5 Semi-supervised learning model framework
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BEE o AR X TR R YA R A
B N 15% 36 2 45% I, PERE 8 45 1% 25 2L

3, AUC M 96.04% $2 T+ % 98.97% , FPR M 5.66%
R 1.38% 5 (H YA AR LG Lt — 204w =
65% S LA LI A IEARATAT /N B T {EL i B
B/ BB TERE R T EHT R ZZ R, Xk
WY, A bR 25 o IR ) 45% i), 26T TCN 5
Transformer 2% B[] Y1125 2 B 7 S BRI L A
BAZA T IOhR 2K 73 A FEAE 25 55 15 B, e
R P AN 1 B 2 4 A0 4 M 2 A R Y K
x4 AREGEHIRL G T HAEI R fEARxT L
Tab.4 Comparison of performance indicators for two
models under different labelled data ratios
PERESE b5/ %

AUC ACC FPR TPR F1

Lo/ % AR

1* 96.04  91.13 5.66 91.56  80.25

N 2" 90.13 87.58  9.67  89.63  80.17
’s 1# 97.03  92.09  3.11  91.61 84.46
2* 91.02 8832 863  89.99 82.68
3 1* 98.21  93.63 2.86  90.13  85.67
2* 9228  90.26  6.46  90.01  84.33
45 1* 98.97 9553  1.38  89.93  88.04
2* 9437 91.22 551  89.56  85.87
6 1# 99.23  96.07 127  89.78  89.01
2* 96.25 9322 335  90.09 88.48
. 1# 99.23  96.15  1.22  90.21  90.03

2" 99.12  96.13 1.14  90.11  90.15

M BRE B BRI 65% B, 2 W B AR Y
(AP BB T IR B85 528 W /)N, I 85% B i 5 4= i
BRI THGE . 0 AR SRR LT
65% Fif, 2 W B AR R B i A KA 34, T H A bR 45
Bl T 25% BRI R g i, Y hR AL
L S 15% I, 2 W R R Y AUC 35 F
96.04% , bb 4= Wi B AL AU 55 5.91% , Tl FPR {2
5.66% , iR F A W B IR 9.67%

g BT L AR W B AR LA S
MPEREFIZ AL RE ST, R A A AR B D 1 1
DU ARSI W2, B 11 JRoR 1 PR AL L
ANFIFREEGE LB T 1 AUC 5 FPR X HESS

SRy I JIT R~ WA A 4G T B AR fEG BHL 422 3t
RIS i 30 e ) A9 A 50, 7 s 2
hi HE ok 40% BOREOL T AR R 12 B 410 ¥ 0 1
e AL EAE AR . B’ 12 OB 07 M IEH
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E 11 ARFREHIF G T AMERE AUC 70 FPR
Fig.11 AUC and FPR of the two models under
different labelled data proportions
RS AR 17 Sy BRI BHL 42 M BB s A 27 Sy

PR e BEL e b B

B 12 WS R AR R
Fig. 12 Confusion matrix of two kinds of fault detection
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AMESR BRE, 1B 13 (a) B2 T B I 25 ) 91 4
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BEAE DN 10 0 15 g i et e TR e,
BENEL,

K 13(b) JER T sh AR L A (n) X HpIE]
WG rh JohR 2 R P A R . BEE I
GG Z A N0 BAPHE N 0.1, 2 NGB A
TN F2 B AR T A AR S 9 U 25, B = 2
PUIELO0 /e €T e I e L | K2 L SRV 61

B 1 R 22 2 Tobn A8 s 1 A DR Ol A 28 T 5 2801 2
i ) Z e Bl R R JE I W B I, i —
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Fig. 13 Loss change curve of semi-supervised model
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UEEE B RYTOHR 28 B w5 DR bR 0, S 20k B2 BB
Jra iz, ACC Hh £k 3 sl 5 K, 15 B 4 P[] 11 25
A IE B ML A8 AARAE T Sl i/ | e 26
HHES 2 I G BTN ¢ i L 2 e S R i
M AH B IR St O JCAR A R o O IE B AR 2, O
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B 14 IZ&EMIIESE ACC Tk phik
Fig. 14 ACC change curves of training set
and validation set
Transformer 2 W7 22 S BRI D)L K TCN 2 W% =
TR R M BEXT LL AN 5 BT
x5 AREEE R NIIEEEXT L
Tab.5 Comparison of detection performance

across different models

PEREFE R/ %

AUC ACC FPR TPR F1

REAIZ R

TransTCN 96.04  91.13 5.66 91.56 80.25
Transformer 95.02 88.34 6.51 82.32 77.85
TCN 91.82 86.34 9.76 80.22 71.63

FH 2% 5 AJ 1, TransTCN 22 Wi BAR U E 45 10 45
Fr EXIET Transformer A1 TCN 22 Wi B AL P i
BEARARTHZY 1% ~ 10% , FPR FFAKZ) 1% ~5% . [Fl
B, Transformer - W B (1) K BLAL F TCN 22 W
BAEHRY A] UL Transformer #5517 B B AS AT 55
B

T R A M PEALG TransTCN 2f= Wi B4 1Y (1
B, # H 5 B 77 ¥ ( Graph-based Method,
GM) B AR [ GG s ( Variational Autoencoder,
VAE) P02 W B 57 5 i) i ML ( Semi-supervised

SVM, S3VM) 72 W 2B B 4 I 4 (Semi-
supervised  Generative Network ,
SGAN) S — Bk aE W fk ( Consistency
Regularization, CR) ™ &5 o it BA 2 Wa B 44 vk ok
FIXSHear i . &R EESHACE R 6 s,
*6 BHZEIESHIRE
Tab.6 Main parameters setting of each algorithm
(RS SR E
GM k ITEBHON 10, e R ECK 0.8, 21 554 0.001
VAE  RUSHEERT D 10,52 5] %55 0.000 1, KL BT A 1
TETISHCN 0.1, B R BT 1 Sk R 2L,
I RIEARECH 100
SGAN  22]%6350.000 1, P85 Z= %04 0.1, LAL43 A4 Adam
CR BRI 0.95, —BHEBUALE R 1.0

Adversarial

S3VM

TE 15% A Fr2 80 e T | A [a) 550125 1) 46 D
MEBE 48 bR X L a3 7 Brom ., Al UL, AR SCRT 4
TransTCN 7Y {4 BEFE AR 34 T =A%
AR DU T Bk Y R AR PR BE 44 4 . CR > SGAN >
S3VM>VAE>GM,
x7 AREEERENIEEEIERRTEE
Tab.7 Detection performance indicators by

different algorithms

PEREHEF7/100%
RIS
ACC TPR FPR F1

GM 86.32 76.53 8.56 70.79
VAE 87.69 77.86 9.67 73.13
S3VM 89.21 78.34 8.42 74.68
SGAN 88.67 83.91 7.23 77.72
CR 90.68 89.56 6.33 87.31
TransTCN 95.31 97.33 5.12 90.13

AT VAL S s A BT H: TransTCN 2§ Wi 7B A5
RURG I 7wk i PERE 3 B I 2R 4 K 56 IE 4
Fefil S 6 :2:2, % ROC Bk AUC %f CR.
SGAN .S3VM . VAE .GM 5 TransTCN A5 % %) 46 ]
PERERE TR S5 AN 15 Fis

FHAHLRY ROC hZe /S 22 1 A, R WK
MPEBE T A, R 15 A%, A SCHF 4R TransTCN
BB ROC & F a2 [, H AUC
T, R ASCR A T oM 7 v
3.6 REESH

F T AT IE TransTCN 2} W5 7B 65 78 7E AN []
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15 &HEEH ROC ik
Fig.15 ROC curves for each algorithm
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Fig. 16 Impact of dataset proportions on

model performance
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