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0　 引言

配电变压器的运行状态关系到配电网的安全

稳定运行,匝间短路是变压器最常见的绕组故

障[1] 。 变压器在运行过程中其线圈可能会出现绝

缘损坏的情况,导致变压器出现匝间短路故障。
变压器匝间短路时产生的短路电流会形成磁场,
继而产生强大的电动力,从而使得线圈和绕组发

生形变,短路产生的热量可能会引起局部过热、绝
缘老化[2] 。 因此对变压器匝间短路前后电气性能

的对比研究至关重要。
在变压器匝间短路分析领域,主要采用数值

法与解析法两种研究手段[3] 。 目前,国内外学

者已取得一系列成果。 例如,冯婷娜等[4] 通过

有限元软件仿真,分析了不同绕组短路故障类

型对变压器内部电场分布的影响;郝艳等[5] 通

过仿真计算,探讨了一次侧绕组在不同匝间短

路故障状态下的磁场分布及两侧绕组电流变

化;王蕴皓[6] 构建了变压器三维温度场模型,并
对比分析了变压器在正常运行状态与不同匝间

短路故障状态下的温度场分布及差异;尚虎军

等[7] 建立了变压器绕组匝间短路试验平台,模
拟了在不同负载工况下的早期绕组匝间短路故

障,并测量了相关电流与温度参数,进而提出了

一种基于电热特征的变压器绕组早期匝间短路

预警技术。
本研究首先对变压器发生匝间短路前后一次

侧与二次侧电流的变化规律进行了探究。 其次,
通过数值分析法构建了变压器匝间短路的仿真模

型,进而获得了短路状态下变压器线圈电流、电磁

损耗以及磁通分布的变动情况。 最后,搭建了基

于注意力机制的多尺度残差网络模型,对变压器

匝间短路进行预警。

1　 解析法分析变压器匝间短路

变压器正常运行时的等效电路图如图 1 所

示。 图中,Z1 为一次侧阻抗;Z′L和 Z′2为二次侧负

载和阻抗归算到一次侧的阻抗值。
可得变压器一、二次侧电流计算式为

图 1　 变压器正常工作时的等效电路图

Fig. 1　 Equivalent
 

circuit
 

diagram
 

of
 

a
 

transformer
 

under
 

normal
 

operating
 

conditions

I1P = U
Z1 + k2(Z′2 + Z′L)

I2P = Uk
Z1 + k2(Z′2 + Z′L)

ì

î

í

ï
ïï

ï
ï

(1)

式中:I1P 、I2P 分别为正常运行时变压器的一、二次

侧电流值;U 为电源电压;k 为变压器一、二次侧

的匝数比。
设变压器绕组总匝数为 N,若匝间短路的匝

数占比为 m,则短路部分的匝数为 Nm,未发生匝

间短路部分匝数为 N(1-m),变压器发生二次侧

匝间短路时的等效电路如图 2 所示。

图 2　 变压器二次侧发生匝间短路时的等效电路图

Fig. 2　 Equivalent
 

circuit
 

diagram
 

of
 

a
 

transformer
 

with
 

secondary-side
 

interturn
 

short
 

circuit

图 2 中,I1t 为一次侧回路的电流;I2t 为二次

侧回路的电流;ZL 为二次侧负载阻抗;E1 为变压

器一次绕组未短路部分的感应电动势;E2m 为二

次侧短路匝数对应的感应电动势;Z2(1-m)为与一

次侧未短路部分关联的阻抗;Z2m 为二次侧短路匝

数对应的阻抗,限制短路电流;R′为二次侧短路回

路中额外的电阻,该电阻用于表征变压器早期匝间

短路中阻抗较大、电弧强度较低的特征,用以模拟

实际工况下早期短路呈现的间歇性短路现象[8] 。
由 E2m 可知未短路部分的感应电动势为

E2(1-m),采用叠加原理,计算出这两部分电压源
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单独作用时二次侧的电流,再对其进行叠加。 一次

侧电压与二次侧短路部分和未短路部分的比值为

E1

E2(1 - m)
=

N1

N2(1 - m)
= k

1 - m
E1

E2m
=

N1

N2m
= k
m

ì

î

í

ï
ïï

ï
ïï

(2)

　 　 二次侧 E2(1-m)单独作用时:
kE2(1 - m) = E1 (3)

I′2t =
E1(1 - m) / k

ZL + Z2(1 - m) + R′‖Z2m

I′3t = I′2t·
R′

R′ + Z2m

ì

î

í

ï
ïï

ï
ï

(4)

式中:I′2t、I′3t分别为绕组短路部分、非短路部分的

电流;‖为并联。
二次侧 E2m 单独作用时,绕组短路部分和非

短路部分的电流 I″2t和 I″3t的计算式为

kE2(1 - m) = E1 (5)

I″2t = I″3t·
R′

ZL + Z2(1 - m) + R′

I″3t =
E1m / k

R′‖[ZL + (1 - m)Z2] + Z2m

ì

î

í

ï
ïï

ï
ï

(6)

　 　 将式(5)、式(6)计算得到的短路电流叠加,
可得二次侧短路匝和非短路匝的电流 I2t 和 I3t,如
式(7)所示:

I2t = I′2t + I″2t

I3t = I′3t + I″3t
{ (7)

　 　 令 R′ = 0,模拟匝间短路,再将二次侧电流折

算到一次侧,可得:

I2t
1 - m

k
=
E1(1 - m) 2

k2 · 1
Z1 + Z2(1 - m)

I3t
m
k

=
E1

k2 · 1
Z2m

ì

î

í

ï
ïï

ï
ïï

(8)

I1t =
U

Z1 + k2Z2 +
k2ZL

1 +
ZLm

Z2(1 - m)

> I1P

I2t =
U

Z1 + k2Z2 +
k2ZL

1 - m
+

nZ1ZL

Z2(1 - m)

< I2P

ì

î

í

ï
ï
ï
ï
ï

ï
ï
ï
ïï

(9)

　 　 对应的等效电路如图 3 所示。

图 3　 归算到一次侧的等效电路图

Fig. 3　 Equivalent
 

circuit
 

diagram
 

referred
 

to
 

the
 

primary
 

side

由式(9)可知,变压器二次侧发生匝间短路

时,一次侧电流较正常运行时会上升,二次侧电流

较正常运行时会下降。

2　 数值法分析变压器匝间短路

2. 1　 变压器三维仿真模型构建

在 COMSOL 软件中构建的三维模型和变压

器网络剖分图如图 4 和 5 所示,输入模型的参数

如表 1 所示,参数基于上海厂家定制版 BS20-M-
100 / 10-N 变压器。 二次侧额定电流为

I = S
3 × U

= 144.34
 

A (10)

式中:S= 100
 

kVA 为变压器容量;U = 0.4
 

kV 为低

压侧额定电压。

图 4　 变压器三维模型

Fig. 4　 3D
 

model
 

of
 

transformer
 

表 1　 输入模型的参数

Tab. 1　 Input
 

parameters
 

for
 

the
 

model

参数名称 参数值

一次侧电压 / kV 10

一、二次侧匝数比 1
 

100 / 105

频率 / Hz 50

一次侧、二次侧每相电阻 / Ω 10、10
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图 5　 变压器网格剖分示意图

Fig. 5　 Mesh
 

generation
 

diagram
 

of
 

a
 

transformer

　 　 变压器一次侧、二次侧电路结构如图 6、7 所

示,构建变压器的场-路耦合模型。 图中,R1、R2

分别为变压器一、二次侧绕组的电阻。

图 6　 变压器一次侧电路结构

Fig. 6　 Primary
 

side
 

circuit
 

structure
 

of
 

a
 

transformer

图 7　 变压器二次侧电路结构

Fig. 7　 Secondary
 

side
 

circuit
 

structure
 

of
 

a
 

transformer

场-路耦合模型通过麦克斯韦方程组描述电

磁场,通过电路接口描述外部电路,两者通过安培

定律和法拉第电磁感应定律进行耦合[9] ,如式

(11)所示:
∇ × (μ -1∇ × A) = Je (11)

式中:μ 为磁导率;A 为磁矢位;Je 为外加电流密

度矢量。

Utotal = IR + L dI
dt

+ d
dt∫SB·dS (12)

式中:Utotal 为电路中的总电压;IR 为电阻上的压

降;L dI
dt

为电感上的感生电动势;B 为磁感应强

度;S 为磁通量穿过的闭合曲面。
2. 2　 匝间短路前后电流变化规律

2. 2. 1　 采用传统的线性阻抗模型模拟匝间短路

正常运行时一次侧、二次侧三相电流波形如

图 8、9 所示。

图 8　 正常运行时一次侧三相电流波形

Fig. 8　 Three
 

phase
 

current
 

waveforms
 

on
 

the
 

primary
side

 

under
 

normal
 

operating
 

conditions

图 9　 正常运行时二次侧三相电流波形

Fig. 9　 Three
 

phase
 

current
 

waveforms
 

on
 

the
 

secondary
 

side
 

under
 

normal
 

operating
 

conditions

由图 8、9 可知,变压器正常工作条件下,一次

侧电流的幅值为 76
 

A,二次侧电流的幅值则为

100
 

A。
设置变压器二次侧 C 相绕组匝间短路电阻

为 R′ = 0.03
 

Ω。 采用线性阻抗模拟二次侧匝间短

路,短路匝数为 5 时,一次侧三相电流波形如图
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10 所示,二次侧故障相非故障匝电流波形如图 11
所示,二次侧故障相故障匝电流波形如图 12
所示。

图 10　 匝间短路时一次侧三相电流波形

Fig. 10　 Primary
 

side
 

three
 

phase
 

current
 

waveforms
 

during
 

an
 

inter-turn
 

short
 

circuit
 

fault

图 11　 匝间短路时二次侧故障相非故障匝电流波形

Fig. 11　 Current
 

waveform
 

of
 

the
 

non-faulted
 

turns
 

in
 

the
 

faulty
 

phase
 

on
 

the
 

secondary
 

side
 

during
 

an
 

inter-turn
 

short
 

circuit
 

fault

由图 10 可知,发生匝间短路故障后,一次侧

绕组电流幅值从 76
 

A 显著上升至 748
 

A,上升幅

度为 884.21% ,同时验证了采用解析法所得推导

结果 I1t >I1P 的正确性。 由图 11 可知,二次侧故障

相非故障匝电流幅值由 100
 

A 降至 87
 

A,下降幅

度为 13% ,同时验证了解析法推导结果 I2t <I2P 的

正确性。 由图 12 可知,变压器二次侧短路匝部分

的短路电流达 4
 

422
 

A,对比二次侧额定电流

144.34
 

A,上升幅度高达 2
 

963.60% 。 匝间短路故

障导致绝缘遭到破坏,致使接触电阻显著降低所

致,短路匝电流急剧增大。

图 12　 匝间短路时二次侧故障相故障匝电流波形

Fig. 12　 Current
 

waveform
 

of
 

the
 

faulted
 

turns
in

 

the
 

faulty
 

phase
 

on
 

the
 

secondary
 

side
 

during
 

an
 

inter-turn
 

short
 

circuit
 

fault

2. 2. 2　 采用非线性电弧阻抗模型模拟匝间短路

传统的线性阻抗模型 U = R0I 无法描述电弧

电阻随电流增大而减小的关键物理现象,不适用

于早期故障分析。 在构建二次侧绕组间短路模型

的过程中,通过非线性电弧电阻模型模拟了电弧

电阻随电流变化的负阻效应,适用于模拟早期、轻
微的电弧性匝间短路。 该模型能准确捕捉这种状

态下微小但非线性的电流变化。
在 COMSOL 中建立变压器匝间短路故障相

电路-磁路耦合模型,原理图如图 13 所示。 图中,
L2 等效为二次侧发生匝间短路的绕组;L1 和 L3

等效为未发生匝间短路的绕组;RL 为二次侧负载

电阻;R′为二次侧短路回路电阻。

图 13　 匝间短路非线性阻抗等效电路图

Fig. 13　 Equivalent
 

circuit
 

diagram
 

of
 

interturn
 

short-circuit
 

with
 

nonlinear
 

impedance

定义 R′两端的电压表达式为

Udown = R0I + aI2 (13)
式中:Udown 为短路点压降;I 为短路回路的电流;
R0 为考虑短路时导线接触电阻,取 0.03;a 为系

数,取-6.5×10-6。
采用非线性电弧模型模拟匝间短路后的一次

侧、二次侧三相电流如图 14、15 所示,采用非线性
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电弧模型模拟匝间短路后的二次侧故障相故障匝

电流如图 16 所示。

图 14　 采用非线性电弧模型模拟匝间短路后的

一次侧三相电流

Fig. 14　 Primary
 

side
 

three-phase
 

currents
 

simulated
 

using
 

a
 

nonlinear
 

arc
 

model
 

for
 

interturn
 

short-
circuit

 

faults

图 15　 采用非线性电弧模型模拟匝间短路后的

二次侧三相电流

Fig. 15　 Secondary
 

side
 

three-phase
 

currents
 

simulated
 

using
 

a
 

nonlinear
 

arc
 

model
 

for
 

interturn
 

short-
circuit

 

faults

由图 14 可知,故障相 C 相的电流比其余两相

升高了 10
 

A。 由图 15 可知,故障相 C 相的电流

对比其余两相降低了 40
 

A。 由图 16 可知,变压

器二次侧短路匝部分产生了 380
 

A 的短路电流,
相比二次侧额定电流 144. 34

 

A, 上升幅度为

163% 。 和采用线性阻抗对比,采用非线性电弧模

拟匝间短路仿真得到的一二次侧故障电流上升幅

度明显减小,该仿真方法能够捕捉变压器匝间短

路故障早期更为微弱的电流变化,为后续基于波

形特征的故障诊断算法提供更高质量、更可靠的

图 16　 采用非线性电弧模型模拟匝间短路后的

二次侧故障相故障匝电流

Fig. 16　 Faulted
 

turn
 

current
 

in
 

the
 

secondary
 

side
 

faulty
 

phase
 

simulated
 

using
 

a
 

nonlinear
 

arc
 

model
 

for
 

interturn
 

short-circuit
 

faults

数据基础。
2. 3　 短路前后的磁通分布变化

变压器的主磁通主要受一次侧电源电压及频

率的影响,其整体变化幅度相对较小[10] 。 短路匝

形成一个低阻抗回路,产生大电流 Ik,其磁势 IkNk

与一次侧磁势相互作用,进而引起漏磁通的增

加[11] 。 短路环周围的漏磁通可能会绕过铁心,通
过空气或其他非理想路径闭合,这将导致局部漏

磁密度的升高,特别是在短路点附近。 为了补偿

短路环的磁势,一次侧电流会相应增大,以保持主

磁通的稳定性[12] 。

图 17　 铁心与绕组之间定义的截线

Fig. 17　 Defined
 

cross-section
 

line
 

between
 

the
 

core
 

and
 

winding

本研究通过三维建模,在铁心与绕组间气隙

中定义截面线如图 17 红色标识所示,定量分析磁

通密度分布特性。 正常运行时铁心与绕组间气隙
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的磁通如图 18 所示,匝间短路后铁心与绕组间气

隙的磁通分布如图 19 所示。

图 18　 正常运行时铁心与绕组间气隙的磁通分布

Fig. 18　 Magnetic
 

flux
 

distribution
 

in
 

the
 

core
 

and
 

winding
 

under
 

normal
 

operation

图 19　 匝间短路后铁心与绕组间气隙的磁通分布

Fig. 19　 Magnetic
 

flux
 

distribution
 

in
 

the
 

core-winding
 

air
 

gap
 

after
 

inter-turn
 

short
 

circuit

由图 17 可知,匝间短路前后,气隙磁通沿截

面线均呈现对称分布规律[13] 。 由图 18 可知,正
常运行时,铁心与绕组之间空气隙的磁通密度呈

现先递减后递增的趋势,在绕组中心位置达到最

小值。 由图 19 可知,匝间短路发生后,铁心与绕

组间气隙的漏磁通密度增大,造成电磁损耗总体

上升[14] 。

3　 基于注意力机制的多尺度残差网

络模型

本文采用的非线性电弧模型模拟的早期故障

特征非常微弱,因此需要建立可靠的识别模型对

变压器匝间短路进行诊断。 而传统的多层感知机

(Multilayer
 

Perceptron,
 

MLP )、 卷 积 神 经 网 络

(Convolutional
 

Neural
 

Network,
 

CNN)和长短期记

忆(Long
 

Short-Term
 

Memory,
 

LSTM) 网络容易将

这些微弱变化淹没在噪声中[15] ,存在时序特征捕

捉不足、 长程依赖建模差及计算效率低等缺

陷[16-17] 。 因此需要建立更加可靠精确的识别模

型对这些关键的、微小的变化进行聚焦[18] 。
基于此,本文提出了基于注意力机制的多尺

度残差网络模型,通过试验采集了大量变压器正

常运行时和发生匝间短路之后的特征量。 一共采

集 6
 

000 个样本,每个样本有 7 个特征,分别为一

次侧电流、二次侧电流、一次侧电压、二次侧电压、
变压器损耗、温度和功率因数。 样本分为三类:第
一类为正常运行情况,标记为 0;第二类为发生轻

微匝间短路的情形,标记为 1;第三类为发生严重

匝间短路的情形,标记为 2。 构建多层注意力机

制残差网络模型,并进行训练,该模型的数学机制

如下。
(1)样本数据以矩阵形式输入模型,如式

(14)所示:
X ∈ R7×L (14)

式中:X 为输入矩阵,包含 7 个特征; L 为采样

点数。
(2)为同时捕获故障特征的局部细节与全局

趋势,模型采用并行的一维卷积结构生成三路特

征图,如式(15)所示:
Hs = f(Ws∗X + bs),

 

s = 1,2,3 (15)
式中:Hs 为第 s 路输出的特征图;Ws 为第 s 路卷

积核;b 为偏置向量。
(3)将三路特征进行拼接,线性映射为查询、

键、值矩阵[19] ,如式(16) ~ (17)所示:

H- = [H- (1) ;H- (2) ;H- (3) ] ∈ R192×Lr (16)
Q = WQH
K = WKH
V = WVH

ì

î

í

ï
ï

ïï

,　 WQ,WK,WV ∈ Rd×192 (17)

式中: WQ、 WK、 WV 为查询、 键、 值可学习投影

矩阵[20] 。
(4)自注意力机制通过计算序列中所有时间

步之间的相关性,动态赋予不同特征以重要性权

重[21] 。 单头注意力权重计算式为

A = softmax
QTK

64( ) ∈ RL′×L′ (18)
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式中:A 为注意力权重矩阵[22] 。
(5)为增强模型容量,采用多头注意力机制。

将所有头的输出拼接后再次投影,得到最终的多

头注意力输出,如式(20)所示:
headi = Attention(HWQ

i ,HWK
i ,HWV

i ) (19)
MultiHead(Hmulti) = [head1 | head2 | … | headh]WO

(20)
式中:h 为头数,本文取 2;WO 为输出投影。

(6)在构建深度网络时,引入残差连接以缓

解梯度消失问题[23] 。 把子层输入原封不动跳接

到输出端[24] ,如式(21)所示:
O = F(Hmulti) + Hmulti (21)

式中:O 为输出特征;F 为残差块的最终输出;
Hmulti 为拼接后的注意力头[25] 。

(7) 模型最终通过一个全局平均池化层和

Softmax 分类器输出预测概率,如式(22)所示:

P(y = j | X) =
exp( z j)

∑
C

c = 1
exp( zc)

(22)

式中:z j、zc 为网络最后一层的输出向量[26] 。
本文所提模型训练流程如图 20 所示。
将总样本划分为训练集 3

 

840 个,验证集 960
个,测试集 1

 

200 个。 加载数据到模型中进行训

练,采用正则化策略引入 Dropout 随机失活神经

元防过拟合[27] ;加入 L2 正则化,通过权重衰减控

制模型复杂度,根据模型训练的情形对学习率进

行衰减,精细调优[28] 。 最终模型在测试集上的准

确率达到 0.975,实现了对变压器匝间短路的有效

识别。
本文模型训练过程的准确率曲线、损失函数

曲线、学习率衰减曲线如图 21 ~ 23 所示。 模型输

出的混淆矩阵如图 24 所示,将其整理成表格,如
表 2 所示。

由图 21 ~ 24 和表 2 可知,本文模型在测试

样本中表现优异,整体准确率达到 0. 975。 其

中,对严重匝间短路的识别最为精准,精确率和

F1 分数均为 1,实现了零漏诊;轻微匝间短路的

F1 分数为 0.96,较传统模型有显著提升;正常情

况的识别也相当稳定,F1 分数为 0.97。 所有类

别的召回率均超过 0.96,证明了模型的强鲁棒

性和强抗噪声能力,完全满足工程应用中对故

障诊断的精度要求。

图 20　 变压器匝间段故障识别程序流程

Fig. 20　 Flowchart
 

of
 

interturn
 

short-circuit
 

fault
 

identification
 

procedure
 

for
 

transformers

图 21　 本文模型训练过程的准确率曲线

Fig. 21　 Accuracy
 

curves
 

during
 

the
 

proposed
 

model
 

training

本文还采用传统的 MLP、CNN 及 LSTM 模型

进行训练,各模型性能对比如表 3 所示。
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图 22　 本文模型训练过程中的损失函数曲线

Fig. 22　 Loss
 

function
 

curves
 

during
 

the
 

proposed
 

model
 

training

图 23　 本文模型训练过程中的学习率衰减曲线

Fig. 23　 Learning
 

rate
 

decay
 

curve
 

during
 

the
 

proposed
 

model
 

training

图 24　 本文模型输出的混淆矩阵

Fig. 24　 Confusion
 

matrix
 

of
 

the
 

proposed
 

model
 

output

表 2　 本文模型的性能

Tab. 2　 Performance
 

for
 

the
 

proposed
 

model

样本类型 精确率 召回率 F1 分数 样本数

正常情况 0.96 0.97 0.97 400

轻微匝间短路 0.97 0.96 0.96 400

严重匝间短路 1 0.99 1 400

表 3　 各模型性能对比

Tab. 3　 Model
 

performance
 

comparison

模型 准确率 精确率 召回率 F1 分数

本文模型 0.975
 

6 0.973
 

6 0.973
 

6 0.973
 

3

MLP 0.832
 

3 0.826
 

3 0.831
 

4 0.821
 

9

CNN 0.901
 

2 0.912
 

4 0.902
 

8 0.899
 

2

LSTM 0.864
 

5 0.876
 

7 0.873
 

7 0.865
 

5

　 　 由表 3 可知,本文提出的模型在准确率、精确

率、召回率和 F1 分数上均显著优于 MLP、CNN 和

LSTM。 具体来说, 本文模型准确率比 MLP 高

14.33 个百分点,比 LSTM 高 11.11 个百分点;F1
分数比 CNN 高 7.41 个百分点,比 LSTM 高 10.78
个百分点。 这表明本文模型在故障识别任务中具

有更强的综合性能。

4　 结语

针对变压器早期匝间短路,本研究构建了

10
 

kV 模拟平台,采用非线性电弧模型模拟小阻

抗故障,提取电流波形和磁密畸变特征。 基于注

意力残差网络搭建识别模型, 测试准确率达

0.975。 COMSOL 仿真表明:一次侧电流增大,二
次侧非故障匝电流减小;非线性模型故障电流更

小;匝间短路导致铁心与绕组间气隙的漏磁通密

度增大,造成电磁损耗总体上升。
采用非线性电弧特性替代短路点阻抗能够有

效模拟配电变压器早期匝间短路故障工况,捕捉

到故障早期微小的电流变化,而基于注意力机制

的多尺度残差网络模型能够实现对正常情况和匝

间短路情况的有效识别,对于配电变压器早期匝

间短路的状态监测与故障预警具有重要价值。
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