[关键词]
[摘要]
由于永磁体中存在涡流损耗,这些损耗会以热量的形式散发出来,使盘式永磁同步电机(DPMSM)内部温度升高。当温度过高时,会引起电机运行性能降低。故针对永磁体涡流损耗进行深入研究,对DPMSM的性能提高及优化设计具有重要意义。利用Maxwell三维电磁场有限元分析软件建立电机有限元模型,在三相正弦电流源驱动下求解电机永磁体电磁场分布;为减小永磁体涡流损耗,对永磁体进行不同方向分割,并对不同方向分割进行仿真对比,得出横向分割为3块效果最佳;在利用电磁屏蔽原理减小涡流损耗时,先对其可靠性进行验证,后利用MATLAB曲线拟合得出屏蔽层厚度的最优值。
[Key word]
[Abstract]
Because there exist eddy current loss in permanent magnet, it will give off in the form of heat. This will cause high temperature in disc permanent magnet synchronous motor (DPMSM). When the temperature is too high, it will cause the problem of degenerate performance of the motor. So conducted intensive studies on the permanent magnets of motor, and further research on these issues was of great significance to improve the performance of disc permanent magnet synchronous motor and its optimization design. In order to reduce the eddy current loss of permanent magnet, the methods of the permanent magnet segment and shielding layer was used. Maxwell, threedimensional finite element analysis software, was used to establish the finite element model of the motor, reveal the electromagnetic distribution around permanent magnet and receive the average eddy current loss of permanent magnet when the motor was driven by threephase sinusoidal current source. The method, segment in several different directions and simulation, was applied to show that the splitting into three pieces horizontally was the best by comparison, when the permanent magnets were segmented. Firstly, the principle’s reliability should be verified, and then the optimal value of shielding layer thickness could be get by MATLAB curve fitting, when using the electromagnetic shielding principle reduce eddy current loss.
[中图分类号]
TM 351
[基金项目]
国家自然科学基金(51107026/51677052/51237005)