[关键词]
[摘要]
【目的】磁通切换磁悬浮直线电机(FSMSLM)散热空间狭小、发热源集中,极易引起电机温升,从而影响其运行。通过计算电机各部件的损耗,对电机进行温度场仿真,以此有针对性地设计冷却系统以保证电机的散热。【方法】首先,介绍了FSMSLM的结构和工作原理,并通过计算得到了FSMSLM的各部件损耗和生热率。然后,建立了FSMSLM温度场数学模型,根据经验公式求得了电机各部件的导热系数,并通过外流场仿真分析结合经验公式得到了相关表面的对流换热系数。最后,通过有限元仿真得到了FSMSLM在额定工况下的整体温度分布和关键部件的温度分布,基于温度分布和FSMSLM结构特性分别设计了串联型水冷管道和并联型水冷管道两种冷却装置,并利用CFD软件对加装冷却系统后的FSMSLM温度场进行仿真。【结果】仿真结果表明:发热集中在绕组部分;额定工况下FSMSLM整体温度处于200.29 ℃~209.68 ℃之间,超出H级绝缘材料的最高允许工作温度180 ℃;加装管口高度为10 mm的并联型和串联型水冷管道后,电机的最高温度分别降为79.70 ℃和61.48 ℃;管口高度为20 mm的水冷管道比10 mm的管道冷却效果提升了8%左右,管道内压力差降低了50%以上;在同一入口水流速度下串联型水冷管道冷却效果更好,冷却效果比并联型水冷管道提高了约8.7%,但其进出口压差约为并联型水冷管道的6倍~8倍。【结论】仿真验证了冷却系统的必要性,综合考虑冷却效果和经济性,选择管口高度为10 mm的并联水冷管道作为FSMSLM的冷却系统。
[Key word]
[Abstract]
[Objective] The flux switching magnetic suspension linear motor (FSMSLM) has a limited heat dissipation space and concentrated heat sources, which can lead to significant temperature rise and adversely affect its operation. To address this, the losses in various motor components are calculated, and a temperature field simulation is performed to design a targeted cooling system that ensures efficient heat dissipation. [Methods] Firstly, the structure and operating principle of the FSMSLM were introduced, followed by the calculation of losses and heat generation rates for each motor component. A mathematical model of the temperature field was established, and the thermal conductivity coefficients of the motor components were obtained using empirical formula. The convective heat transfer coefficients for the relevant surfaces were derived by combining simulation results of the external flow field with the empirical formulas. Finally, finite element simulations were carried out to determine the overall temperatur
[中图分类号]
[基金项目]