2021, 48(8):106-113.
DOI: 10.12177/emca.2021.059
摘要:
为了有效诊断气体绝缘金属封闭输电线路(GIL)的机械故障,搭建了110 kV GIL试验平台并设计了3种典型机械故障,通过互补集合经验模态分解(CEEMD)模糊熵值与鲸鱼优化极限学习机(WOA-ELM)模型联合方法对GIL机械故障模式进行识别与诊断。首先,利用CEEMD方法对振动信号进行分解,引入正负白噪声组对信号进行处理,得到含有故障信息的模态分量(IMF)。其次,利用模糊熵计算模态分量特征值,得到能表征故障特征的模糊熵值。最后,结合WOA-ELM模型对特征向量集进行模式识别,根据聚类结果与自适应阈值对GIL设备机械故障进行诊断和预警。结果表明,利用CEEMD与模糊熵对GIL振动信号特征进行分析,可以有效避免模态混叠和冗余噪声分量的干扰,得到能够表征故障特征的特征值;利用WOA-ELM模型可以有效实现GIL设备机械故障诊断与预警。