Research on Small Disturbance Stability of Wind StorageIsolated Network System
DOI:
Author:
Affiliation:

(1. School of Electric Power, Shenyang Institute of Engineering, Shenyang 110136, China;2. State Grid Liaoning Electric Power Research Institute, Shenyang 110006, China)

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Based on the general principle of power system operation, the study of the small signal stability and dynamic stability of the wind storage isolated network system was the key to ensure the reliability of power supply in some areas. Based on the eigenvalue analysis method and the Lyapunov stability criterion of linear system, the problem of small disturbance stability of the wind storage isolated network system was studied. The energy storage inverter control strategy based on droop control mode is proposed, and the corresponding mathematical model was established according to the control strategy of each module of the wind storage isolated network system. Small disturbance stability of mathematical model of each module of the wind storage isolated network system was analysed based on eigenvalue analysis, and the stability judgment of the wind storage isolated network system was determined according to the Lyapunov stability criterion of linear system. Based on the MATLAB/Simulink simulation platform, the simulation model of the wind storage isolated network system was established, and the simulation results showed that the system could achieve stable operation, which was consistent with the small disturbance stability analysis. The research results could provided theoretical reference for the study of the stability of wind storage isolated network system.

    Reference
    Related
    Cited by
Get Citation

YE Peng, LI Shan, HE Miao, WANG Gang, HAN Yue, SUN Feng. Research on Small Disturbance Stability of Wind StorageIsolated Network System[J]. Electric Machines & Control Application,2017,44(12):84-93.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: December 09,2019
  • Published:
You are thevisitor
沪ICP备16038578号-3
Electric Machines & Control Application ® 2025
Supported by:Beijing E-Tiller Technology Development Co., Ltd.

沪公网安备 31010702006048号